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Abstract. Estimating the effort, time, and cost needed to build a software project is an important task in software 

engineering. Estimating software prior to development can help to reduce risk and improve the project success 

rate. Researchers have developed numerous traditional and machine learning models to estimate software 

effort, but it has always been difficult to estimate effort precisely. This paper presents a predictive model based 

on artificial neural networks namely ANNs to predict the software effort. The NASA dataset is applied to 

construct the proposed model. The system was trained using 50 data points, and the remaining 10 were used 

for testing. It was concluded that the ANN approach could estimate the software effort with high accuracy. A 

comparative study with other published equations was also performed, and it was found that ANN had less error 

and produced better results than other existing methods. 
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1. INTRODUCTION 

A highly difficult challenge task for project managers is estimating the cost and effort 

required in the early stages of planning. Software projects necessitate effective planning to 

ensure on-time delivery, within budget, and to required quality standards. Underestimation the 

effort can cause a delay and cost over-run, causing project failure, as well as its overestimation 

the effort may leading to a financial loss for a company [1]. Accordingly, the success or failure 

of any software project it seems to be heavily dependent on how accurate its effort estimates 

are [2]. To do this, a  reliable approaches should be available to conduct project feasibility 

analysis, project planning, allocation of resource, overall project cost estimation and project 

scheduling [3]. Soft computing (SC) approaches like artificial neural network (ANN) have 

recently been used widely as a flexible tool for modelling the complex relationship between 

software attributes and effort. The advantages of adopting SC techniques over other methods 

because their capability to self-learn from the data and, as a result, reduce error. SC involves 

some effective techniques for solving complex problems using the human tolerance for partial 

truth, imprecision, uncertainty, and approximation [4].  

By using these methods, a significant amount of time and cost would be saved while 

also improving accuracy. In this paper, the ability of one of the most commonly approaches in 

soft computing namely artificial neural networks (ANNs) is employed to estimate the software 

effort. The NASA database is applied as the dataset to train and test the presented ANN model. 
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The obtained results of the proposed model were also compared with other existing equations, 

and good agreement is achieved. 

The organization of this paper is as follows: in section 2, the systematic literature review 

that was conducted are described briefly. Section 3 describes the ANN technique Section 4 

shows the evaluation criteria used. Section 5 gives detail about the datasets and the structure of 

the proposed model used in this paper. Experimental results, comparison, and conclusion are 

presented in Section 6, Section 7, and Section 8 respectively.  

 

2. LITERATURE REVIEW 

Related Work 

ANN technique is widely used in software effort estimation because of their ability to 

learn and generalize from data . Numerous researchers used various ANN methods and various 

datasets to predict the effort more precisely.  

Rijwani and Jain [5] used back-propagation ANN to estimate software effort. The 

predictive model has been constructed by using COCOMO dataset. Mohsin [6] implemented a 

back-propagation ANN for effort estimation a. The COCOMO datasets were used for training 

and testing the model. Jaswinder Kaur, et al [7] modelled the software effort utilizing a back 

propagation ANN technique . The authors used  NASA dataset which consist of 18 projects to 

build the proposed model. Roheet Bhatnagar, et al.[8] employed the ANN approach to model 

the software development effort. They used the dataset supplied by Lopez-Martin, which 

contains data from 41 project. K.K. Aggarwal , et al.[9] used various training algorithms for 

ANN to find which is the best suited for using in effort estimation. ISBSG repository data was 

used to develop the ANN model. It has been observed that the ‘trainbr’ is the best algorithm. 

G. E. Wittig, et al.[10] investigated the ability of ANN technique in predicting the software 

development effort. They utilized a datasets of 15 commercial systems. Kumar et al. [11] 

explore the ability of wavelet neural network (WNN) for computing the software effort 

estimation. Two sets of data have been employed : the IBM data processing services, which 

included 37 projects, and the Canadian financial, which included 24 projects. The proposed 

WNN demonstrated more accuracy when compared to the other models. Nassif et al. [12] 

conducted a study for predicting the software development effort by using the ISBSG datasets. 

Four ANNs techniques (multi layer perceptron effort, general regression NNs, cascade 

correlation NNs, and radial basis function NNs) were used. Their results showed that the 

cascade correlation NNs performed better than the other techniques. Finally, in recent years, 

great interest in using soft computing techniques especially ANNs has increased. The ANN 

method has been used successfully to a variety of problems. They can be employed as 
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predictive models since they develop methods for modeling complex and non-linear ANN 

technique is widely used in software effort estimation because of its ability to learn and 

generalize from data. Numerous researchers used various ANN methods and various datasets 

to predict the effort more precisely.  

Rijwani and Jain [5] used back-propagation ANN to estimate software effort. The 

predictive model has been constructed by using COCOMO dataset. Mohsin [6] implemented a 

back-propagation ANN for effort estimation a. The COCOMO datasets were used for training 

and testing the model. Jaswinder Kaur, et al [7] modelled the software effort utilizing a back 

propagation ANN technique . The authors used  NASA dataset which consist of 18 projects to 

build the proposed model. Roheet Bhatnagar, et al.[8] employed the ANN approach to model 

the software development effort. They used the dataset supplied by Lopez-Martin, which 

contains data from 41 projects. K.K. Aggarwal, et al.[9] used various training algorithms for 

ANN to find which is the best suited for use in effort estimation. ISBSG repository data was 

used to develop the ANN model. It has been observed that the ‘trainbr’ is the best algorithm. 

G. E. Wittig, et al.[10] investigated the ability of ANN technique to predict the software 

development effort. They utilized a dataset of 15 commercial systems. Kumar et al. [11] 

explore the ability of wavelet neural network (WNN) for computing the software effort 

estimation projects, and the Canadian financial, which included 24 projects. The proposed 

WNN demonstrated more accuracy when compared to the other models. Nassif et al. [12] 

conducted a study to predict the software development effort by using the ISBSG datasets. Four 

ANN techniques (multi-layer perceptron effort, general regression NNs, cascade correlation 

NNs, and radial basis function NNs) were used. Their results showed that the cascade 

correlation NNs performed better than the other techniques. Finally, in recent years, great 

interest in using soft computing techniques especially ANNs has increased. The ANN method 

has been used successfully to a variety of problems. They can be employed as predictive models 

since they develop methods for modeling complex and non-linear relationships.  

Artificial Neural Network Model  

Artificial neural networks (ANN) defines as a mathematical model that simulates the 

human brain processes. weight, summing their product, and then utilizing the activation 

function to generate the desired output. If the sum exceeds a certain value known as the 

threshold, then this output can be either excitatory (positive) or inhibitory (negative) input to 

neuron in the network. This process continuous It consists of a large number of simple 

processing units or nodes called artificial neurons [13]. Information is flowed through the 

network along interconnections. At each node, an input value is multiplied by its corresponding 
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till final outputs are obtained [14]. Figure 1 depicts the structure of a single artificial neuron 

which includes inputs parameter, weights, transfer functions, activation functions, threshold 

and outputs. 

The neural network are fed by numbers of inputs data. As an input enters the node, it is 

multiplied by its associated weight value. Weight typically represents the strength of the 

connection between nodes within a network. All weighted inputs are summed up within the 

artificial neurons and then the non-linear transfer function is utilized to produce the desired 

output [4], as provided in Equation (1):  

Total activation:   𝑛𝑒𝑡 𝑗 = ∑ (𝑤𝑖𝑗)𝑥𝑖 − T𝑗
𝑛
𝑖=1                                           (1) 

Where j is the neuron number, n is the number of nodes, 𝑤𝑖𝑗 is connection weight value, 

𝑥𝑖 is input value, and T𝑗 is known as the bias of the neuron and is equivalent to the neuron's 

negative threshold value. 

 

Figure 1. Typical architecture of artificial neurons [15]. 

The feed-forward backpropagation algorithm is used in the considered ANN 

simulations. An ANN structure contains three layers: an input layer which presents input 

parameters to the network, one or more hidden layers, and the output layer which involves a 

single neuron representing target variables number. 

The trials indicated that the two-hidden-layer network outperformed the one-hidden-

layer network. A trial and error method was used to determine the optimal number of nodes in 

the hidden layers. The Back-Propagation Neural Network (BPNN) is trained by feeding a set 

of input-output variables. The main goal of the training process is to modify the connection 

weights to an acceptable level by reducing the errors between the target output and the 

predicted output of the ANN. To get the optimum model performance, the number of hidden 

layers, numbers of hidden neurons, transfer functions, and data normalization are all chosen. 

Once errors have been reduced to a minimum, testing is performed using a different set of data 

that was not utilized in the training phase to determine the efficacy of the proposed ANN model. 

This process is referred to as generalization of the network. There is no additional weight 

adjustment during this process. Details of the architecture and procedures of ANN are 

explained in the available literature [16]. 
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Evaluation Criteria for Model Performance  

Mean Magnitude Relative Error (MMRE) 

The most commonly used measure for evaluating the efficiency of estimated effort 

model is MMRE. It gives the average of the difference between the estimated values by 

proposed model and the actual values for all the projects. MMRE can be calculated using 

equation 2  .  

𝑀𝑀𝑅𝐸 =
1

𝑁
∑

|𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡
𝑁
1                              (2) 

The Correlation Coefficient (R): 

The Correlation coefficient (R) is the most common way to measure a linear association 

between two variables. It is a number between -1 and +1.  

When the R-value is closer to 1, it indicates a strong linear relationship. A negative R-

value indicates that there is no correlation between the data and the model. The value of R can 

be found using equation 3:  

𝑅 = 1 − √
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁

𝑖=1

2

∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁
𝑖=1

2                            (3) 

 

The Root Mean Square Error (RMSE):  

The root mean square error (RMSE) is a metric commonly used to evaluate the accuracy 

of predictions. 

RMSE = √
∑ (Actual Effort−Predicted Effort)2𝑁

𝑖=1

𝑁
                           (4) 

  

Where N is the total number of software projects.  

Experiment  

Data Description 

NASA data projects collection for the determining of development effort with the ANN 

model has been used effort using in the present study. This dataset is comprised of 60 projects 

data. There were 17 attributes in this dataset, however only four attributes were taken into 

consideration, namely CPLX, PCAP, and KLOC. as shown in Table 1.  

The variables that are used to predict other variables are known as independent 

variables, whereas the variables that are estimated are known as the dependent variable. In this 

paper, the independent variables are PCAP (programmer capability), CPLX (product 

complexity), and KLOC (thousand of lines code). While, the dependent variable was the 
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development effort. Since the CPLX and PCAP values were in fuzzy format, we had to convert 

them to numeric format as follows for the experiment: 

a. Very high. 

b. High. 

c. Normal. 

d. extra high. 

e. low. 

The database was split into two groups including the 50 and 10 projects to train and test 

the proposed ANN model. 

Table 1: NASA Dataset. 
Project No. PCAP CPLX KLOC Actual Effort 

1 1 1 70 278 

2 2 2 177.9 1248 

3 1 2 227 1181 

4 3 2 115.8 480 

5 3 2 19.7 60 

6 3 2 29.5 120 

7 3 2 66.6 300 

8 3 2 10.4 50 

9 3 2 5.5 18 

10 3 2 14 60 

11 3 2 6.5 42 

12 3 2 16 114 

13 3 2 13 60 

14 3 2 8 42 

15 3 2 15 90 

16 2 2 90 450 

17 2 2 38 210 

18 3 2 32.6 170 

19 3 2 12.8 62 

20 3 2 15.4 70 

21 2 3 10 48 

22 3 2 16.3 82 

23 3 2 161.1 815 

24 3 2 48.5 239 

25 3 2 35.5 192 

26 3 2 7.7 31.2 

27 3 2 25.9 117.6 

28 3 2 24.6 117.6 

29 3 2 9.7 25.2 

30 3 2 3.5 10.8 

31 3 2 2.2 8.4 

32 3 2 8.2 36 

33 1 2 150 324 

34 3 2 66.6 352.8 

35 3 2 100 360 

36 1 2 100 360 

37 2 2 100 215 

38 2 2 15 48 
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39 2 2 31.5 60 

40 3 2 32.5 60 

41 3 2 11.3 36 

42 2 2 6 24 

43 2 2 20 48 

44 1 2 20 72 

45 2 2 302 2400 

46 2 2 7.5 72 

47 3 2 219 2120 

48 3 2 370 3240 

49 2 2 101 750 

50 3 2 50 370 

51 1 3 190 420 

52 3 2 47.5 252 

53 3 4 21 107 

54 1 3 423 2300 

55 2 3 79 400 

56 3 5 284.7 973 

57 3 5 282.1 1368 

58 2 2 78 571.4 

59 2 2 11.4 98.8 

60 2 2 19.3 155 

 

Generation of the ANN Model 

The NN toolbox [17] provided in MATLAB program was used to build the ANN 

predictive model. A feed-forward propagation algorithm was utilized for modelling the ANN. 

The sigmoid transfer function was used in the hidden layers and the linear transfer function 

was applied for the output layer. By using the trial-and-error method, the best epochs, hidden 

layer numbers, and hidden layer node numbers were found. The training convergence of the 

ANN model is based on minimizing the for root mean square error (RMSE) error tolerance 

throughout the training phase and comparing the outputs to evaluate the performance of the 

ANN model. After the errors have been reduced, testing is done to determine whether the 

predicted results are reasonably close to the target data. Every neural network consists of an 

input layer with units representing the input data and an output layer with single node provides 

development effort. Two hidden layers are also included as intermediate layers. The trials 

revealed that the network with two-hidden layer outperforms the network with one-hidden 

layer. The optimum number of nodes in the hidden layers giving the best ANN structure was 

determine to be 10 for the first hidden layer and 9 for second hidden layer. Therefore, the 

optimal ANN model was determined to be ANN (3-10-9-1). The architecture of neural network 

model is presented in Figure 2. The ANN model was continuously trained using update weights 

until it attained a final error of 0.0066 after 27 epochs. The performance of the proposed ANN 

model for the testing dataset are presented in Table 2.  
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Figure 2: The structure of the proposed ANN model used in this paper. 

Table 1.  Effort estimation using ANN technique 

Project ID Actual effort predicted effort with 

ANN 

51 420 524.23 

52 252 213.89 

53 107 229.89 

54 2300 2648.24 

55 400 313.1 

56 973 1223.32 

57 1368 1140.28 

58 571.4 359.4 

59 98.8 96.46 

60 155 115.27 

 

 

3. RESULTS AND DISSECTIONS 

The predictive capability of the proposed ANN model was evaluated using the testing 

datasets, as shown in Figure 3. As it can be observed from the figure, the predictive values 

match well with the actual values. The values of R was 0.976 for testing phase. Figure 4 depicts 

a comparison between actual effort with results estimated by the ANN model for testing set. 

There was a good agreement between both data sets. Table 3 summarizes the performance of 

proposed model for testing dataset in term of MMRE, R, and RMSE. According to Table 3, the 

Input layer First hidden layer Second hidden layer Output layer  

CPLX 

PCAP 

KSLOC 
EFFORT 
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value of MMRE and RMSE is in the acceptable rang. The ANN model gives a correlation 

coefficient R for testing data sets of 0.976 which are very close to unity. The results revealed 

that the ANN approach was able to be effective in software effort estimation. 

 

Figure 3. The results of the proposed ANN vs. actual data for the testing set. 

 

Figure 4. A head to head comparison of performance for proposed ANN model and actual 

data for testing set. 

 

Table 3.  Results of the ANN model 
Performance criteria Predicted effort with ANN 

MMRE 0.299 

R 0.976 

RMSE 178.13 
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Comparison with Existing Methods 

The ability of the proposed ANN model to predict the software development effort was 

compared to the outputs of the four existing models such as the Walston - Felix model, Halstead 

model, Doty model, and Bailey-Basili model. Table 4 presents a summary of the considered 

equations. The results of the models including the ANN model for the testing data sets are 

plotted against the actual data in Figures 5 and 6. As demonstrated in these figures, the values 

of the proposed ANN match well with the actual values and perform better compared with the 

other previous models. For a better comparison, the results of the criteria RMSE and MMRE 

for all models are given in Table 5. In order to select the model with the best performance, the 

RMSE and MMRE computed for test data must have the lowest value. According to Table 5, 

the proposed ANN has the lowest values of  RMSE and MMRE. These values indicate that the 

model presented in this study has best performance in predicting the software effort compared 

to the other four models. 

Table 4. The equations considered for comparison with ANN model. 

Model Name Equations 

Walston - Felix model Effort = 5.2(KLOC)0.91 

Halstead model Effort = 0.7(KLOC)1.5 

Doty model Effort = 5.288 (KLOC)1.047 

Bailey-Basili model Effort = 5.5 + 0.73(KLOC)1.16 
 

 

Figure 5. Predicted versus actual effort estimation for testing data set. 
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Figure 6. Comparison of the performance of the predicted and actual effort values for test period. 

Table 5. Summary results. 

Performance 

Criteria 

Model Used 

ANN 
Walston-Felix 

model 
Halstead model 

Doty 

model 

Bailey-Basili 

model 

RMSE 178.13 380.44 1609.38 503.72 590.30 

MMRE 0.299 0.373 1.108 0.514 0.650 

 

4. CONCLUSION  

This study investigated using artificial neural networks (ANN) for estimating the 

software development effort. Three variables representing the CPLX, PCAP, and KLOC are 

considered as input parameters to predict the output (effort). The NASA dataset is applied for 

building the predictive model. For the training and testing phases of the model, 50 and 10 

projects are used, respectively. The optimum ANN model is chosen after experimenting 

different models structure. The best ANN model was found to be ANN (3-10-9-1). The 

evaluation is conducted using three error indexes, such as the MMRE, RMSE, and the 

correlation coefficient R. The amount of  MMRE, RMSE, and R for the test period are 0.299, 

178.13, and 0.976, respectively. The results of the ANN method demonstrate a satisfactory 

agreement with the actual data. Furthermore, the proposed ANN model showed the most 

optimized results compared with the other existing models such as the Walston-Felix model, 

Halstead model, Doty model, and Bailey-Basili model. Finally, it could be declared that the 

ANN can be used as a reliable, and efficient approach in the modeling and prediction of 

software development effort. For Future work, new methods and models can be done to 

estimate software effort based on machine learning algorithms. 
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