

Mars: Jurnal Teknik Mesin, Industri, Elektro dan Ilmu Komputer

 Volume. 3 Nomor. 1 Tahun 2025
e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

DOI: https://doi.org/10.61132/mars.v3i1.666
Available online at: https://journal.arteii.or.id/index.php/Mars

Received November 17,2024; Revised Desember 19,2024; Accepted Januari 20, 2025; Online Available: Januari 23, 2025

Application of Neural Networks in Prediction of Software Effort

Zainab Rustum Mohsin

Department of Information Technology, College of Computer Science and Mathematics,

University of Thi-Qar, Thi-Qar, Iraq.

Author correspondence: zainabrustum@utq.edu.iq

Abstract. Estimating the effort, time, and cost needed to build a software project is an important task in software

engineering. Estimating software prior to development can help to reduce risk and improve the project success

rate. Researchers have developed numerous traditional and machine learning models to estimate software

effort, but it has always been difficult to estimate effort precisely. This paper presents a predictive model based

on artificial neural networks namely ANNs to predict the software effort. The NASA dataset is applied to

construct the proposed model. The system was trained using 50 data points, and the remaining 10 were used

for testing. It was concluded that the ANN approach could estimate the software effort with high accuracy. A

comparative study with other published equations was also performed, and it was found that ANN had less error

and produced better results than other existing methods.

Keywords: ANN, Machine Learning, NASA, Software Effort

1. INTRODUCTION

A highly difficult challenge task for project managers is estimating the cost and effort

required in the early stages of planning. Software projects necessitate effective planning to

ensure on-time delivery, within budget, and to required quality standards. Underestimation the

effort can cause a delay and cost over-run, causing project failure, as well as its overestimation

the effort may leading to a financial loss for a company [1]. Accordingly, the success or failure

of any software project it seems to be heavily dependent on how accurate its effort estimates

are [2]. To do this, a reliable approaches should be available to conduct project feasibility

analysis, project planning, allocation of resource, overall project cost estimation and project

scheduling [3]. Soft computing (SC) approaches like artificial neural network (ANN) have

recently been used widely as a flexible tool for modelling the complex relationship between

software attributes and effort. The advantages of adopting SC techniques over other methods

because their capability to self-learn from the data and, as a result, reduce error. SC involves

some effective techniques for solving complex problems using the human tolerance for partial

truth, imprecision, uncertainty, and approximation [4].

By using these methods, a significant amount of time and cost would be saved while

also improving accuracy. In this paper, the ability of one of the most commonly approaches in

soft computing namely artificial neural networks (ANNs) is employed to estimate the software

effort. The NASA database is applied as the dataset to train and test the presented ANN model.

https://doi.org/10.61132/mars.v3i1.666
https://journal.arteii.or.id/index.php/Mars

Application of Neural Networks in Prediction of Software Effort

195 MARS - VOLUME. 3, NOMOR. 1, TAHUN 2025

The obtained results of the proposed model were also compared with other existing equations,

and good agreement is achieved.

The organization of this paper is as follows: in section 2, the systematic literature review

that was conducted are described briefly. Section 3 describes the ANN technique Section 4

shows the evaluation criteria used. Section 5 gives detail about the datasets and the structure of

the proposed model used in this paper. Experimental results, comparison, and conclusion are

presented in Section 6, Section 7, and Section 8 respectively.

2. LITERATURE REVIEW

Related Work

ANN technique is widely used in software effort estimation because of their ability to

learn and generalize from data . Numerous researchers used various ANN methods and various

datasets to predict the effort more precisely.

Rijwani and Jain [5] used back-propagation ANN to estimate software effort. The

predictive model has been constructed by using COCOMO dataset. Mohsin [6] implemented a

back-propagation ANN for effort estimation a. The COCOMO datasets were used for training

and testing the model. Jaswinder Kaur, et al [7] modelled the software effort utilizing a back

propagation ANN technique . The authors used NASA dataset which consist of 18 projects to

build the proposed model. Roheet Bhatnagar, et al.[8] employed the ANN approach to model

the software development effort. They used the dataset supplied by Lopez-Martin, which

contains data from 41 project. K.K. Aggarwal , et al.[9] used various training algorithms for

ANN to find which is the best suited for using in effort estimation. ISBSG repository data was

used to develop the ANN model. It has been observed that the ‘trainbr’ is the best algorithm.

G. E. Wittig, et al.[10] investigated the ability of ANN technique in predicting the software

development effort. They utilized a datasets of 15 commercial systems. Kumar et al. [11]

explore the ability of wavelet neural network (WNN) for computing the software effort

estimation. Two sets of data have been employed : the IBM data processing services, which

included 37 projects, and the Canadian financial, which included 24 projects. The proposed

WNN demonstrated more accuracy when compared to the other models. Nassif et al. [12]

conducted a study for predicting the software development effort by using the ISBSG datasets.

Four ANNs techniques (multi layer perceptron effort, general regression NNs, cascade

correlation NNs, and radial basis function NNs) were used. Their results showed that the

cascade correlation NNs performed better than the other techniques. Finally, in recent years,

great interest in using soft computing techniques especially ANNs has increased. The ANN

method has been used successfully to a variety of problems. They can be employed as

e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

predictive models since they develop methods for modeling complex and non-linear ANN

technique is widely used in software effort estimation because of its ability to learn and

generalize from data. Numerous researchers used various ANN methods and various datasets

to predict the effort more precisely.

Rijwani and Jain [5] used back-propagation ANN to estimate software effort. The

predictive model has been constructed by using COCOMO dataset. Mohsin [6] implemented a

back-propagation ANN for effort estimation a. The COCOMO datasets were used for training

and testing the model. Jaswinder Kaur, et al [7] modelled the software effort utilizing a back

propagation ANN technique . The authors used NASA dataset which consist of 18 projects to

build the proposed model. Roheet Bhatnagar, et al.[8] employed the ANN approach to model

the software development effort. They used the dataset supplied by Lopez-Martin, which

contains data from 41 projects. K.K. Aggarwal, et al.[9] used various training algorithms for

ANN to find which is the best suited for use in effort estimation. ISBSG repository data was

used to develop the ANN model. It has been observed that the ‘trainbr’ is the best algorithm.

G. E. Wittig, et al.[10] investigated the ability of ANN technique to predict the software

development effort. They utilized a dataset of 15 commercial systems. Kumar et al. [11]

explore the ability of wavelet neural network (WNN) for computing the software effort

estimation projects, and the Canadian financial, which included 24 projects. The proposed

WNN demonstrated more accuracy when compared to the other models. Nassif et al. [12]

conducted a study to predict the software development effort by using the ISBSG datasets. Four

ANN techniques (multi-layer perceptron effort, general regression NNs, cascade correlation

NNs, and radial basis function NNs) were used. Their results showed that the cascade

correlation NNs performed better than the other techniques. Finally, in recent years, great

interest in using soft computing techniques especially ANNs has increased. The ANN method

has been used successfully to a variety of problems. They can be employed as predictive models

since they develop methods for modeling complex and non-linear relationships.

Artificial Neural Network Model

Artificial neural networks (ANN) defines as a mathematical model that simulates the

human brain processes. weight, summing their product, and then utilizing the activation

function to generate the desired output. If the sum exceeds a certain value known as the

threshold, then this output can be either excitatory (positive) or inhibitory (negative) input to

neuron in the network. This process continuous It consists of a large number of simple

processing units or nodes called artificial neurons [13]. Information is flowed through the

network along interconnections. At each node, an input value is multiplied by its corresponding

Application of Neural Networks in Prediction of Software Effort

197 MARS - VOLUME. 3, NOMOR. 1, TAHUN 2025

till final outputs are obtained [14]. Figure 1 depicts the structure of a single artificial neuron

which includes inputs parameter, weights, transfer functions, activation functions, threshold

and outputs.

The neural network are fed by numbers of inputs data. As an input enters the node, it is

multiplied by its associated weight value. Weight typically represents the strength of the

connection between nodes within a network. All weighted inputs are summed up within the

artificial neurons and then the non-linear transfer function is utilized to produce the desired

output [4], as provided in Equation (1):

Total activation: 𝑛𝑒𝑡 𝑗 = ∑ (𝑤𝑖𝑗)𝑥𝑖 − T𝑗
𝑛
𝑖=1 (1)

Where j is the neuron number, n is the number of nodes, 𝑤𝑖𝑗 is connection weight value,

𝑥𝑖 is input value, and T𝑗 is known as the bias of the neuron and is equivalent to the neuron's

negative threshold value.

Figure 1. Typical architecture of artificial neurons [15].

The feed-forward backpropagation algorithm is used in the considered ANN

simulations. An ANN structure contains three layers: an input layer which presents input

parameters to the network, one or more hidden layers, and the output layer which involves a

single neuron representing target variables number.

The trials indicated that the two-hidden-layer network outperformed the one-hidden-

layer network. A trial and error method was used to determine the optimal number of nodes in

the hidden layers. The Back-Propagation Neural Network (BPNN) is trained by feeding a set

of input-output variables. The main goal of the training process is to modify the connection

weights to an acceptable level by reducing the errors between the target output and the

predicted output of the ANN. To get the optimum model performance, the number of hidden

layers, numbers of hidden neurons, transfer functions, and data normalization are all chosen.

Once errors have been reduced to a minimum, testing is performed using a different set of data

that was not utilized in the training phase to determine the efficacy of the proposed ANN model.

This process is referred to as generalization of the network. There is no additional weight

adjustment during this process. Details of the architecture and procedures of ANN are

explained in the available literature [16].

e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

Evaluation Criteria for Model Performance

Mean Magnitude Relative Error (MMRE)

The most commonly used measure for evaluating the efficiency of estimated effort

model is MMRE. It gives the average of the difference between the estimated values by

proposed model and the actual values for all the projects. MMRE can be calculated using

equation 2 .

𝑀𝑀𝑅𝐸 =
1

𝑁
∑

|𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡
𝑁
1 (2)

The Correlation Coefficient (R):

The Correlation coefficient (R) is the most common way to measure a linear association

between two variables. It is a number between -1 and +1.

When the R-value is closer to 1, it indicates a strong linear relationship. A negative R-

value indicates that there is no correlation between the data and the model. The value of R can

be found using equation 3:

𝑅 = 1 − √
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁

𝑖=1

2

∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁
𝑖=1

2 (3)

The Root Mean Square Error (RMSE):

The root mean square error (RMSE) is a metric commonly used to evaluate the accuracy

of predictions.

RMSE = √
∑ (Actual Effort−Predicted Effort)2𝑁

𝑖=1

𝑁
 (4)

Where N is the total number of software projects.

Experiment

Data Description

NASA data projects collection for the determining of development effort with the ANN

model has been used effort using in the present study. This dataset is comprised of 60 projects

data. There were 17 attributes in this dataset, however only four attributes were taken into

consideration, namely CPLX, PCAP, and KLOC. as shown in Table 1.

The variables that are used to predict other variables are known as independent

variables, whereas the variables that are estimated are known as the dependent variable. In this

paper, the independent variables are PCAP (programmer capability), CPLX (product

complexity), and KLOC (thousand of lines code). While, the dependent variable was the

Application of Neural Networks in Prediction of Software Effort

199 MARS - VOLUME. 3, NOMOR. 1, TAHUN 2025

development effort. Since the CPLX and PCAP values were in fuzzy format, we had to convert

them to numeric format as follows for the experiment:

a. Very high.

b. High.

c. Normal.

d. extra high.

e. low.

The database was split into two groups including the 50 and 10 projects to train and test

the proposed ANN model.

Table 1: NASA Dataset.
Project No. PCAP CPLX KLOC Actual Effort

1 1 1 70 278

2 2 2 177.9 1248

3 1 2 227 1181

4 3 2 115.8 480

5 3 2 19.7 60

6 3 2 29.5 120

7 3 2 66.6 300

8 3 2 10.4 50

9 3 2 5.5 18

10 3 2 14 60

11 3 2 6.5 42

12 3 2 16 114

13 3 2 13 60

14 3 2 8 42

15 3 2 15 90

16 2 2 90 450

17 2 2 38 210

18 3 2 32.6 170

19 3 2 12.8 62

20 3 2 15.4 70

21 2 3 10 48

22 3 2 16.3 82

23 3 2 161.1 815

24 3 2 48.5 239

25 3 2 35.5 192

26 3 2 7.7 31.2

27 3 2 25.9 117.6

28 3 2 24.6 117.6

29 3 2 9.7 25.2

30 3 2 3.5 10.8

31 3 2 2.2 8.4

32 3 2 8.2 36

33 1 2 150 324

34 3 2 66.6 352.8

35 3 2 100 360

36 1 2 100 360

37 2 2 100 215

38 2 2 15 48

e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

39 2 2 31.5 60

40 3 2 32.5 60

41 3 2 11.3 36

42 2 2 6 24

43 2 2 20 48

44 1 2 20 72

45 2 2 302 2400

46 2 2 7.5 72

47 3 2 219 2120

48 3 2 370 3240

49 2 2 101 750

50 3 2 50 370

51 1 3 190 420

52 3 2 47.5 252

53 3 4 21 107

54 1 3 423 2300

55 2 3 79 400

56 3 5 284.7 973

57 3 5 282.1 1368

58 2 2 78 571.4

59 2 2 11.4 98.8

60 2 2 19.3 155

Generation of the ANN Model

The NN toolbox [17] provided in MATLAB program was used to build the ANN

predictive model. A feed-forward propagation algorithm was utilized for modelling the ANN.

The sigmoid transfer function was used in the hidden layers and the linear transfer function

was applied for the output layer. By using the trial-and-error method, the best epochs, hidden

layer numbers, and hidden layer node numbers were found. The training convergence of the

ANN model is based on minimizing the for root mean square error (RMSE) error tolerance

throughout the training phase and comparing the outputs to evaluate the performance of the

ANN model. After the errors have been reduced, testing is done to determine whether the

predicted results are reasonably close to the target data. Every neural network consists of an

input layer with units representing the input data and an output layer with single node provides

development effort. Two hidden layers are also included as intermediate layers. The trials

revealed that the network with two-hidden layer outperforms the network with one-hidden

layer. The optimum number of nodes in the hidden layers giving the best ANN structure was

determine to be 10 for the first hidden layer and 9 for second hidden layer. Therefore, the

optimal ANN model was determined to be ANN (3-10-9-1). The architecture of neural network

model is presented in Figure 2. The ANN model was continuously trained using update weights

until it attained a final error of 0.0066 after 27 epochs. The performance of the proposed ANN

model for the testing dataset are presented in Table 2.

Application of Neural Networks in Prediction of Software Effort

201 MARS - VOLUME. 3, NOMOR. 1, TAHUN 2025

Figure 2: The structure of the proposed ANN model used in this paper.

Table 1. Effort estimation using ANN technique

Project ID Actual effort predicted effort with

ANN

51 420 524.23

52 252 213.89

53 107 229.89

54 2300 2648.24

55 400 313.1

56 973 1223.32

57 1368 1140.28

58 571.4 359.4

59 98.8 96.46

60 155 115.27

3. RESULTS AND DISSECTIONS

The predictive capability of the proposed ANN model was evaluated using the testing

datasets, as shown in Figure 3. As it can be observed from the figure, the predictive values

match well with the actual values. The values of R was 0.976 for testing phase. Figure 4 depicts

a comparison between actual effort with results estimated by the ANN model for testing set.

There was a good agreement between both data sets. Table 3 summarizes the performance of

proposed model for testing dataset in term of MMRE, R, and RMSE. According to Table 3, the

Input layer First hidden layer Second hidden layer Output layer

CPLX

PCAP

KSLOC
EFFORT

e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

value of MMRE and RMSE is in the acceptable rang. The ANN model gives a correlation

coefficient R for testing data sets of 0.976 which are very close to unity. The results revealed

that the ANN approach was able to be effective in software effort estimation.

Figure 3. The results of the proposed ANN vs. actual data for the testing set.

Figure 4. A head to head comparison of performance for proposed ANN model and actual

data for testing set.

Table 3. Results of the ANN model
Performance criteria Predicted effort with ANN

MMRE 0.299

R 0.976

RMSE 178.13

50

250

450

650

850

1050

1250

1450

1650

1850

2050

2250

2450

2650

2850

50 250 450 650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850

P
re

d
ic

te
d

 E
ff

o
rt

Actual Effort

R=0.976
MMRE=0.299
RMSE=178.125

0

500

1000

1500

2000

2500

3000

50 51 52 53 54 55 56 57 58 59 60 61

EF
FO

R
T

Project ID number

Actual

ANN

Application of Neural Networks in Prediction of Software Effort

203 MARS - VOLUME. 3, NOMOR. 1, TAHUN 2025

Comparison with Existing Methods

The ability of the proposed ANN model to predict the software development effort was

compared to the outputs of the four existing models such as the Walston - Felix model, Halstead

model, Doty model, and Bailey-Basili model. Table 4 presents a summary of the considered

equations. The results of the models including the ANN model for the testing data sets are

plotted against the actual data in Figures 5 and 6. As demonstrated in these figures, the values

of the proposed ANN match well with the actual values and perform better compared with the

other previous models. For a better comparison, the results of the criteria RMSE and MMRE

for all models are given in Table 5. In order to select the model with the best performance, the

RMSE and MMRE computed for test data must have the lowest value. According to Table 5,

the proposed ANN has the lowest values of RMSE and MMRE. These values indicate that the

model presented in this study has best performance in predicting the software effort compared

to the other four models.

Table 4. The equations considered for comparison with ANN model.

Model Name Equations

Walston - Felix model Effort = 5.2(KLOC)0.91

Halstead model Effort = 0.7(KLOC)1.5

Doty model Effort = 5.288 (KLOC)1.047

Bailey-Basili model Effort = 5.5 + 0.73(KLOC)1.16

Figure 5. Predicted versus actual effort estimation for testing data set.

e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

Figure 6. Comparison of the performance of the predicted and actual effort values for test period.

Table 5. Summary results.

Performance

Criteria

Model Used

ANN
Walston-Felix

model
Halstead model

Doty

model

Bailey-Basili

model

RMSE 178.13 380.44 1609.38 503.72 590.30

MMRE 0.299 0.373 1.108 0.514 0.650

4. CONCLUSION

This study investigated using artificial neural networks (ANN) for estimating the

software development effort. Three variables representing the CPLX, PCAP, and KLOC are

considered as input parameters to predict the output (effort). The NASA dataset is applied for

building the predictive model. For the training and testing phases of the model, 50 and 10

projects are used, respectively. The optimum ANN model is chosen after experimenting

different models structure. The best ANN model was found to be ANN (3-10-9-1). The

evaluation is conducted using three error indexes, such as the MMRE, RMSE, and the

correlation coefficient R. The amount of MMRE, RMSE, and R for the test period are 0.299,

178.13, and 0.976, respectively. The results of the ANN method demonstrate a satisfactory

agreement with the actual data. Furthermore, the proposed ANN model showed the most

optimized results compared with the other existing models such as the Walston-Felix model,

Halstead model, Doty model, and Bailey-Basili model. Finally, it could be declared that the

ANN can be used as a reliable, and efficient approach in the modeling and prediction of

software development effort. For Future work, new methods and models can be done to

estimate software effort based on machine learning algorithms.

0

1000

2000

3000

4000

5000

6000

7000

50 51 52 53 54 55 56 57 58 59 60 61

Ef
fo

rt

Project ID

Actual

ANN

Walston-Felix
model

Application of Neural Networks in Prediction of Software Effort

205 MARS - VOLUME. 3, NOMOR. 1, TAHUN 2025

REFERENCE

Aggarwal, K., Singh, Y., Chandra, P., & Puri, M. (2005). Evaluation of various training

algorithms in a neural network model for software engineering applications. ACM

SIGSOFT Software Engineering Notes, 30(4), 1–4.

Bhatnagar, R., Bhattacharjee, V., & Ghose, M. K. (2010). Software development effort

estimation–neural network vs. regression modeling approach. International Journal of

Engineering Science and Technology, 2(7), 2950–2956.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ:

Prentice Hall.

Jeon, J., & Rahman, M. S. (2008). Fuzzy neural network models for geotechnical problems.

Kaur, J., Singh, S., Kahlon, K. S., & Bassi, P. (2010). Neural network—a novel technique for

software effort estimation. International Journal of Computer Theory and Engineering,

2(1), 17.

Kumar, K. V., Ravi, V., Carr, M., & Kiran, N. R. (2008). Software development cost estimation

using wavelet neural networks. Journal of Systems and Software, 81(11), 1853–1867.

Mair, C., et al. (2000). An investigation of machine learning-based prediction systems. Journal

of Systems and Software, 53(1), 23–29.

MathWorks. (2009). Neural network toolbox user’s guide: For use with MATLAB.

Mohsin, Z. R. (2021). Application of artificial neural networks in prediction of software

development effort. Turkish Journal of Computer and Mathematics Education

(TURCOMAT, 12(14), 4186–4202.

Mohsin, Z. R. (2021). Comparative study for software effort estimation by soft computing

models. Journal of Education for Pure Science-University of Thi-Qar, 11(2), 108–120.

Mohsin, Z. R. (2021). Investigating the use of an adaptive neuro-fuzzy inference system in

software development effort estimation. Iraqi Journal for Computer Science and

Mathematics, 2(2), 18–24.

Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2016). Neural network models for software

development effort estimation: A comparative study. Neural Computing and

Applications, 27(8), 2369–2381.

Rafiq, M., Bugmann, G., & Easterbrook, D. (2001). Neural network design for engineering

applications. Computers & Structures, 79(17), 1541–1552.

Rijwani, P., & Jain, S. (2016). Enhanced software effort estimation using multi-layered feed-

forward artificial neural network technique. Procedia Computer Science, 89, 307–312.

Singal, P., Kumari, A. C., & Sharma, P. (2020). Estimation of software development effort: A

Differential Evolution Approach. Procedia Computer Science, 167, 2643–2652.

e-ISSN : 3031-8742, dan p-ISSN : 3031-8750, Hal. 194-206

Tanarslan, H., Secer, M., & Kumanlioglu, A. (2012). An approach for estimating the capacity

of RC beams strengthened in shear with FRP reinforcements using artificial neural

networks. Construction and Building Materials, 30, 556–568.

Wittig, G. E., & Finnie, G. R. (1994). Using artificial neural networks and function points to

estimate 4GL software development effort. Australasian Journal of Information

Systems, 1(2).

