Achieving High Accuracy in Breast Cancer Diagnosis with CNN
DOI:
https://doi.org/10.61132/mars.v2i4.240Keywords:
convolution neural network, Breast cancer, detection, WDBC datasetAbstract
Breast cancer is a prevalent disease among women that can lead to fatalities. Using deep learning methods to detect and classify tumors can aid in the diagnostic process. Tumors can be classified as either malignant or benign, and doctors require an accurate diagnostic system to distinguish between the two. Even specialists can find it challenging to identify tumors, emphasizing the need for an automated diagnostic system for diagnosing and treating tumors. This study aims to enhance the efficiency of breast cancer diagnosis by implementing a deep convolutional neural network (DCNN). The Wisconsin Diagnostic Breast Cancer (WDBC) dataset was used in the main trials. The CNN technique utilized in this study exhibits superior performance compared to existing methods and achieves a 99.70% accuracy rate in detecting breast cancer.
References
Bennett, K. P., & Mangasarian, O. L. (1992). Neural Network Training via Linear Programming. Dalam P. M. Pardalos (Ed.), Advances in Optimization and Parallel Computing (hlm. 56-67). Elsevier Science Publishers B. V.
Elmore, J. G., Armstrong, K., Lehman, C. D., & Fletcher, S. W. (2005). Screening for breast cancer. The Journal of the American Medical Association, 293(10), 1245-1256. https://doi.org/10.1001/jama.293.10.1245
Elmore, J. G., Nakano, C. Y., Koepsell, T. D., Desnick, L. M., & Ransoho, D. F. (2003). International variation in screening mammography interpretations in community-based programs. J Natl Cancer Inst, 95(18), 1384-1393.
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202.
Gayathri, B. M., Sumathi, C. P., & Santhanam, T. (2013). Breast cancer diagnosis using machine learning algorithms –a survey. International Journal of Distributed and Parallel Systems (IJDPS), 4(3). https://doi.org/10.5121/ijdps.2013.4309
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for android malware detection using deep learning. Dalam Proceedings of the Fifth Annual DFRWS Europe, Digital Investigation, 24, S48-S59. https://doi.org/10.1016/j.diin.2018.01.
Kim, Y., et al. (2018). Applying Data-driven Imaging Biomarker in Mammography for Breast Cancer Screening: Preliminary Study. Scientific Reports, 8(1), 2762. https://doi.org/10.1038/s41598-018-21215-1
Kim, Y. (2014). Convolutional neural networks for sentence classification. Dalam Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (hlm. 1746-1751).
Kiyan, T., & Yildirim, Y. (2004). Breast cancer diagnosis using statistical neural networks. Journal of Electrical & Electronics Engineering, Istanbul University, 4(2), 1149-1153.
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Dalam Advances in Neural Information Processing Systems (hlm. 1097-1105).
Lecun, Y., Bengio, Y., & Hinton, G. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.
Lecun, Y., Bottou, L., Bengio, Y., & Haner, P. (1998). Deep learning. Nature, 521(7553), 436-444.
Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A Survey on deep learning in medical image analysis. Medical Image Analysis Journal, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
Lo, S.-C., Lou, S.-L., Lin, J.-S., Freedman, M. T., Chien, M. V., & Mun, S. K. (1995). Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Transactions on Medical Imaging, 14, 711-718.
Mu, T., & Nandi, A. K. (2008). Breast cancer diagnosis from fine-needle aspiration using supervised compact hyperspheres and establishment of confidence of malignancy. Dalam 16th European Signal Processing Conference (EUSIPCO 2008).
O'Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. ArXiv e-prints.
Pena-Reyes, C. A., & Sipper, M. (1998). A Fuzzy-genetic approach to breast cancer diagnosis. Artificial Intelligence in Medicine, 17(2), 131-155.
Pennington, J., & Socher, R., et al. (2014). GloVe: Global Vectors for Word Representation. Dalam Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (hlm. 1532-1543).
Russakovsky, O., et al. (2014). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 1-42.
Sahan, S., Polat, K., Kodaz, H., & Gunes, S. (2001). A new hybrid method based on fuzzy-artificial immune system and k-NN algorithm for breast cancer diagnosis. Computers in Biology and Medicine, 37, 415-423.
Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics. CA: A Cancer Journal for Clinicians, 67(1), 7-30.
University of Wisconsin-Madison. (n.d.). Machine Learning for Cancer Diagnosis and Prognosis. Diakses 16 Juli 2024, dari http://pages.cs.wisc.edu/olvi/uwmp/cancer.html
Veronesi, U., Boyle, P., Goldhirsch, A., Orecchia, R., & Viale, G. (2005). Breast cancer. The Lancet, 365, 1727-1741.
Wolberg, W. H., Street, W. N., & Heisey, D. M. (1995). Computer-derived nuclear features distinguish malignant from benign breast cytology. Human Pathology, 26, 792-796.
Wolberg, W. H., Street, W. N., & Mangasarian, O. L. (1995). Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Analytical and Quantitative Cytology and Histology, 17(2), 77-87.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.