Analisis Sentimen Masyarakat terhadap Pelayanan e-KTP dengan Metode Support Vector Machine

Authors

  • Elisabeth Lusi Tania Holo Universitas Stella Maris Sumba
  • Yulius Nahak Tetik Universitas Stella Maris Sumba
  • Diana Reby Sabawaly Universitas Stella Maris Sumba

DOI:

https://doi.org/10.61132/merkurius.v2i6.477

Keywords:

sentiment, svm, e-ktp

Abstract

The rapid development of information and communication technology allows society to access various information needed in daily life. The Law of the Republic of Indonesia Number 23 of 2006 concerning population administration serves as an important element in population management. Population documents are issued by official institutions and have legal legitimacy as valid evidence. The method used in this research regarding public sentiment towards e-ID card services is the survey method, which aims to collect data from a large population using a smaller sample. The steps or processes in this research using the SVM method consist of case folding, cleaning, tokenizing, normalization, stopword removal, and stemming. Based on the classification of 150 test data using SVM, the number of positive sentiments recorded is 110 opinions, while negative sentiments recorded are 40 opinions.

References

Albab, M. U., Karuniawati, Y., & Fawaiq, M. N. (2023). Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic. urnal TRANSFORMATIKA, 1-10.

Hamka, M., & Sari, D. R. (2022). Analisis Sentimen dan Information Extraction Pembelajaran Daring Menggunakan Pendekatan Lexicon. Djtechno: Journal of Information Technology Research, 21-32.

Hidayat, R., Rahman, R., Perdana, R. M., & Arbansyah , A. (2024). Analisis Sentimen Aplikasi Identitas Kependudukan Digital Menggunakan Metode Naïve Bayes . Jurnal Sistem Informasi dan Ilmu Komputer, 129-140.

Lende, S., Tetik, Y. N., & Ayu, M. P. (2023). Analisis Sentimen Siswa Terhadap Pelajaran Informatika di SMPK St. Yohanes Kalembu Lona Dengan Metode Naive Bayes Classifer . JIKOMSI, 217-225.

Maidiana, M. (2021). Penelitian Survey. ALACRITY : Journal Of Education, 20-29.

Muttaqien, D. D., Tibyani, T., & Hartono, P. P. (2022). Implementasi Support Vector Machine pada Analisis Sentimen mengenai Bantuan Sosial di Era Pandemi Covid-19 pada Pengguna Twitter. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer , 163-171.

Putra, A. W. (2022). Kualitas Pelayanan E-Ktp Di Dinas Kependudukan Dan Pencatatan Sipil Kota Pontianak Di Masa Pandemi Covid-19. Jurnal Ilmu Administrasi Publik , 711-729.

Raehanun, M. (2021). Analisis Support Vector Machine (SVM) dalam Prediksi Permintaan Emas Peprhiasan. Yogyakarta: Universitas Islam Indonesia.

Rinandyaswara, R., Sari, Y. A., & Furqon, M. T. (2022). Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi). Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 717-724.

Sinulingga, J. R., & Sitorus , H. (2020). Analisis Opini Publik Tentang Kualitas Pelayanan e-KTP di Kantor camat Merdeka Kabupaten Karo. Jurnal Ilmiah Ilmu Komunikasi , 134-143.

Sofyan, S., & Prasetyo, A. (2021). Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Data Tidak Seimbang Pada Tingkat Pendapatan Pekerja Informal Di Provinsi D.I. Yogyakarta Tahun 2019. Seminar Nasional Official Statistics (hal. 868-877). Jakarta: Politeknik Statistika STIS.

Sulistiani, V. A., & Hamka, M. (2024). Analisis Sentimen Pengguna Media Sosial Terhadap Identitas Kependudukan Digital Menggunakan Metode upport Vector Machine (SVM). Journal of Information System Research (JOSH), 1323-1332.

Downloads

Published

2024-11-12

How to Cite

Elisabeth Lusi Tania Holo, Yulius Nahak Tetik, & Diana Reby Sabawaly. (2024). Analisis Sentimen Masyarakat terhadap Pelayanan e-KTP dengan Metode Support Vector Machine. Merkurius : Jurnal Riset Sistem Informasi Dan Teknik Informatika, 2(6), 310–321. https://doi.org/10.61132/merkurius.v2i6.477

Similar Articles

You may also start an advanced similarity search for this article.