Aplikasi Deteksi Warna Berbasis Mikrokontroler : Mewujudkan Solusi Cerdas dalam Identifikasi Visual
DOI:
https://doi.org/10.61132/merkurius.v3i1.608Keywords:
Application, Detection, Color, Microcontroller, VisualAbstract
This study aims to develop a color detection application based on microcontrollers as an intelligent solution for visual identification. The application is designed to accurately detect and identify color spectrums using a color sensor integrated with a microcontroller. A project management approach in informatics engineering was applied to ensure the effective design and implementation of the system. A qualitative descriptive method was employed in this research, including data collection through device testing and interviews with potential users. The results demonstrate that the application can recognize colors with high accuracy, making it applicable across various fields such as industry, education, and assistive technology. Supporting factors for the application's success include hardware and software compatibility, while the main challenges involve the impact of light intensity on sensor performance. Further development is recommended to enhance the application’s performance in more diverse operational environments.
References
Athifa, S. F., & Rachmat, H. H. (2019). Evaluasi karakteristik deteksi warna RGB sensor TCS3200 berdasarkan jarak dan dimensi objek. JETRI: Jurnal Ilmiah Teknik Elektro, 16(2), 105–120. https://doi.org/10.25105/jetri.v16i2.3459
Fina Supegina, D. (2016). Perancangan robot pencapit untuk penyotir barang berdasarkan warna LED RGB dengan display LCD berbasis Arduino Uno. Jurnal Teknik Elektro, 5(1), 9–17.
Hanafie, A., Baco, S., & Kamarudding. (2021). Perancangan alat penyortir buah tomat berbasis Arduino Uno. Jurnal Teknologi dan Komputer (JTEK), 1(01), 24–31. https://doi.org/10.56923/jtek.v1i01.70
Kiftiyah, M., Santoso, & Munsyi. (2015). Robot pendeteksi warna. Jurnal Sains dan Informatika, 1(2), 38–47.
Novena, U. (2021). Kajian visual warna pada kesenian muturuk Mentawai. NARADA: Jurnal Desain & Seni, 4, 259–273.
Novena, U. (2021). Kajian visual warna pada kesenian muturuk Mentawai. NARADA: Jurnal Desain & Seni, 4, 259–273.
Nugraha, W. G., Arifin, Y. F., Mahyudin, I., & Ilham, W. (2016). Identifikasi visual batuan PAF dan NAF studi kasus di PT Arutmin Indonesia Asam Asam. EnviroScienteae, 12(3), 292. https://doi.org/10.20527/es.v12i3.2454
Nur, M., Irwan, S., & Santosa, D. (2019). Identifikasi visual cacat produk menggunakan neural network model backpropagation (studi kasus: PT. Panasonic Gobel Eco Solution). Jurnal Informatika: Jurnal Pengembangan IT, 4(2–2), 165–169. https://doi.org/10.30591/jpit.v4i2-2.1865
Sokop, S. J., Mamahit, D. J., Eng, M., & Sompie, S. R. U. A. (2016). Trainer periferal antarmuka berbasis mikrokontroler Arduino Uno. Jurnal Teknik Elektro dan Komputer, 5(3), 13–23. https://ejournal.unsrat.ac.id/index.php/elekdankom/article/view/11999
Zulkarnain, I., Mukhlis, R., & Badrul, A. (2019). Implementasi alat pendeteksi warna benda menggunakan fuzzy logic dengan sensor TCS3200 berbasis Arduino. Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, 2(2), 106–117.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.