Pengelompokan Data Wilayah Rawan Bencana Alam di Pulau Jawa

Authors

  • Maulana Ichsan Universitas Bina Sarana Informatika
  • Erlangga Alfath Wijaya Universitas Bina Sarana Informatika
  • Mohammad Raffi Mahendra Universitas Bina Sarana Informatika
  • Faisal Amar Alfarouk Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.61132/neptunus.v2i3.181

Keywords:

Convex zone between tectonic plates, Volcanoes, earthquakes

Abstract

Java Island is the most disaster-prone region in Indonesia because Java Island is located in a convex zone (meeting each other) between two tectonic plates, namely the Eurasian Plate in the north, and the Indo-Australian Plate which causes the formation of volcanoes and earthquakes. Java Island which is near the convergence zone of these plates causes Java to become a disaster-prone zone, with many volcanoes that often erupt and experience many earthquakes. Volcanoes are formed due to the movement of hot magma from the meeting of plates to the earth's surface. While earthquakes occur due to the instantaneous movement of earth plates.

References

Agustina, M. (2023). Implementasi algoritma K-means pada peristiwa gempa bumi di wilayah Jawa Barat. Jurnal Wahana Informatika (JWI), 2(2).

Dwitiyanti, N., Ayu Kumala, S., & Dwi Handayani, S. (n.d.). Penerapan metode K-means pada klasterisasi wilayah rawan gempa di Indonesia Implementation of K-means method in classterization of earthquake prone areas in Indonesia.

Firman, M., Halik, A., & Septiana, L. (2022). Analisa data untuk prediksi daerah rawan bencana alam di Jawa Barat menggunakan algoritma K-means clustering. Journal of Information System, Applied, Management, Accounting and Research, 6(4), 856–870. https://doi.org/10.52362/jisamar.v6i4.939

Homepage, J., Herviany, M., Putri Delima, S., Nurhidayah, T., Studi Sistem Informasi, P., & Sains dan Teknologi UIN Sultan Syarif Kasim Riau Jl Soebrantas, F. H. (2021). Perbandingan algoritma K-means dan K-medoids untuk pengelompokkan daerah rawan tanah longsor di Provinsi Jawa Barat. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1, 34–40.

Murdiaty, M., Angela, A., & Sylvia, C. (2020). Pengelompokkan data bencana alam berdasarkan wilayah, waktu, jumlah korban dan kerusakan fasilitas dengan algoritma K-means. Jurnal Media Informatika Budidarma, 4(3), 744. https://doi.org/10.30865/mib.v4i3.2213

Nurjanah, S., & Mursalin, E. (2021). Pentingnya mitigasi bencana alam longsor lahan: Studi persepsi mahasiswa. Jurnal Basicedu, 6(1), 515–523. https://doi.org/10.31004/basicedu.v6i1.1937

Reviantika, F., Harahap, C. N., & Azhar, Y. (2020). Analisis gempa bumi pada Pulau Jawa menggunakan clustering algoritma K-means analysis earthquake in Java Island using clustering K-means algorithm. Jurnal Dinamika Informatika, 9(1). https://twitter.com/infobmkg

Rohman, D., Annisa, R., Efendi, D. I., & Solahudin, D. (2024). Clustering bencana alam menggunakan K-means pada wilayah Jawa Barat. Jurnal Mahasiswa Teknik Informatika, 8(1). https://www.ncbi.nlm.nih.gov/books/NBK55

Rosaliyah, I., Nurhakim, B., & Manajemen, J. (2023). Clustering kejadian bencana alam di Jawa Barat berdasarkan jenis bencana menggunakan K-means. 18, 10–16. https://opendata.jabarprov.go.id/

Sains Riset, J., & Ike Nur Jannah Tiara, S. (2023). Potensi angin puting beliung di Pulau Jawa dan dampaknya pada lingkungan. Jurnal Sains Riset, 13(1), 76. https://doi.org/10.47647/jsr.v10i12

Published

2024-06-25

How to Cite

Maulana Ichsan, Erlangga Alfath Wijaya, Mohammad Raffi Mahendra, & Faisal Amar Alfarouk. (2024). Pengelompokan Data Wilayah Rawan Bencana Alam di Pulau Jawa. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 2(3), 46–51. https://doi.org/10.61132/neptunus.v2i3.181