Prediksi Tingkat Stunting Anak di Kabupaten Langkat Menggunakan Metode Regresi Linear Berganda
(Studi Kasus : Dinas PPKB-PPA Kab.Langkat)
DOI:
https://doi.org/10.61132/saturnus.v2i4.344Keywords:
Stunting, Prediction, Multiple Linear Regression, RMSEAbstract
Stunting is a growth and development disorder in children caused by chronic malnutrition over a long period of time, especially in the first 1,000 days of life, namely from pregnancy to the first 2 years of life. There are more than 149 million (22%) toddlers worldwide who are stunted, of which 6.3 million are Indonesian toddlers. Based on data from the Ministry of Health, the stunting rate in Indonesia in 2023 was recorded at 21.5 percent, only down 0.1 percent from the previous year which amounted to 21.6 percent. Predicting the number of stunted toddlers is very important and necessary to know the stunting rate in Langkat Regency in 2024, and the prediction results can help health workers in handling and preventing the spread of stunting. The method applied to this prediction system is Multiple Linear Regression where this analysis determines whether each independent variable is positively or negatively related, the direction of the relationship between variables, and estimates the value of the dependent variable will increase or decrease. The prediction system is carried out using the RapidMiner application because this application is very appropriate to produce information output in the form of prediction results for the coming year. The prediction results obtained are an increase and decrease in 2024 in each sub-district and there are sub-districts that do not experience an increase and decrease. The sub-district with the highest number was Secanggang with approximately 177 people, and the sub-district with the lowest number of stunted children was West Berandan with approximately 55 people. Then Stabat sub-district became the sub-district that experienced the most increase in the number of stunting, which was around 15 people, and the sub-district that experienced the most decrease was Kuala sub-district with a total of approximately 23 people. From the overall results it can be calculated that the number of stunting in all districts in Langkat Regency amounted to approximately 2453 people in 2024. And testing the error rate of prediction results using RMSE in the RapidMiner application of 7.63%, where the level of accuracy in the prediction of child stunting in Langkat Regency is 92.46%.
References
Adiguno, S., Syahra, Y., & Yetri, M. (2022). Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(4), 275. https://doi.org/10.53513/jursi.v1i4.5331
Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediksi Peningkatan Jumlah Pelanggan dengan Simulasi Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 3, 95–100. https://doi.org/10.37034/infeb.v3i3.92
Hendra Di Kesuma, Apriadi, D., Juliansa, H., & Etriyanti, E. (2022). Implementasi Data Mining Prediksi Mahasiswa Baru Menggunakan Algoritma Regresi Linear Berganda. Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau, 4(2), 62–66. https://doi.org/10.52303/jb.v4i2.74
Jaya, H., Gunawan, R., & Kustini, R. (2019). Penerapan Data Mining Untuk Memprediksi Target Produksi Berdasarkan Tingkat Penjualan Dan Banyaknya Pemesanan Produk Pada Pt. Neo National Menggunakan Metode Regresi Linier Berganda. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 18(2), 219. https://doi.org/10.53513/jis.v18i2.162
Matdoan, M. Y., Matdoan, U. A., & Saleh Far-Far, M. (2022). Algoritma K-Means Untuk Klasifikasi Provinsi di Indonesia Berdasarkan Paket Pelayanan Stunting. PANRITA Journal of Science, Technology, and Arts, 1(2), 41–46. https://journal.dedikasi.org/pjsta
Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(1), 8–17. https://doi.org/10.25077/teknosi.v7i1.2021.8-17
Ramdhani, A., Handayani, H., & Setiawan, A. (2020). Hubungan Pengetahuan Ibu Dengan Kejadian Stunting. Semnas Lppm, ISBN: 978-, 28–35.
Rudy, S. (2022). Estimasi Jumlah Perceraian Menggunakan Metode Regresi Linear Berganda Studi Kasus Pengadilan Agama Stabat. Seminar Nasional Informatika (Senatika), 6(3), 1–6. https://www.jurnal.kaputama.ac.id/index.php/SENATIKA/article/view/1079
Samosir, R. A., Rozy, M. F., & Windarto, A. P. (2021). Penerapan Algoritma Regresi Linier Berganda dalam Mengestimasi Jumlah Perceraian di Pengadilan Agama Simalungun. TIN: Terapan Informatika Nusantara, 2(1), 16–20. https://ejurnal.seminar-id.com/index.php/tin
Sholeh, M., Nurnawati, E. K., & Lestari, U. (2023). Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner. JISKA (Jurnal Informatika Sunan Kalijaga), 8(1), 10–21. https://doi.org/10.14421/jiska.2023.8.1.10-21
Wanto, A., & Windarto, A. P. (2017). Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation. Jurnal & Penelitian Teknik Informatika, 2(2), 37–44.
Wardhana, R. G., Wang, G., & Sibuea, F. (2023). Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia. Journal of Information System Management (JOISM), 5(1), 40–45. https://doi.org/10.24076/joism.2023v5i1.1136
Yulia, N., Saragih, R., & Ambarita, I. (2021). Data Mining Pengelompokan Anak Stunting Berdasarkan Usia , Penyebab dan Pekerjaan Orang Tua Dengan Menggunakan Metode Clustering ( Studi Kasus : Dinas Kesehatan Kabupaten Langkat ). Seminar Nasional Informatika (SENATIKA)Prosiding SENATIKA 2021, 12. http://www.ejournal.pelitaindonesia.ac.id/ojs32/index.php/SENATIKA/article/view/1174/661
Zana Nainggolan, R., Ibnutama, K., & Gilang Suryanata, M. (2021). Implementasi Data Mining Dengan Metode Regresi Linier BergandaDalam Estimasi Mahasiswa Baru Pada SekolahTinggi Agama Islam Raudhatul Akmal Batang Kuis. Jurnal CyberTech, 1(1), 13–20. https://ojs.trigunadharma.ac.id/index.php/jct
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saturnus : Jurnal Teknologi dan Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.