Klasifikasi Penyakit Kronis Melalui Mata Menggunakan Algoritma Convolutional Neural Network Dengan Model MobileNet-V3
DOI:
https://doi.org/10.61132/uranus.v2i2.120Keywords:
Convolutional Neural Network, Chronic Diseases, Eye, Image, MobileNet-V3Abstract
Chronic diseases in humans are very difficult to detect visually, for example glaucoma, hypertension, diabetes, and others. So it takes a lot of time for further medical examination by visiting a health center or hospital. Therefore, this research aims to find a solution combining medical and computer science to classify quickly and precisely. Classifying eye images requires good features and characteristics so that disease images can be classified. This research uses the Deep Learning method, namely Convolutional Neural Network with MobileNet-V3 architecture which can extract features from large resolution images very well. This research resulted in accurate classification of images of chronic diseases Normal, Diabetes, Glucoma, Cataract, Age related macular degeneration, Hypertension, Pathalogical Myopia. uses the MobileNet-V3 architecture, with transfer learning reaching 81%, and loss only 0.4913.
References
Agarwal, M., Gupta, S. K., & Biswas, K. K. (2020). Development of efficient CNN model for tomato crop disease identification. Sustainable Computing: Informatics and Systems, 28, 100407.
Cahya, F. N., Hardi, N., Riana, D., & Hadiyanti, S. (2021). Klasifikasi penyakit mata menggunakan convolutional neural network (CNN). Sistemasi, 10(3), 618. https://doi.org/10.32520/stmsi.v10i3.1248
Chu, X., Zhang, B., & Xu, R. (2020). MOGA: Searching beyond MobileNetV3. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4042–4046.
Fadli, R. (2022). Katarak. Halodoc. https://www.halodoc.com/kesehatan/katarak
Fadli, R. (2022). Degenerasi makula. Halodoc. https://www.halodoc.com/kesehatan/degenerasi-makula
Fadli, R. (n.d.). Hipertensi. Halodoc. https://www.halodoc.com/kesehatan/hipertensi
Fahmi, H. (2019). Sistem pakar mendiagnosa penyakit mata katarak dengan metode certainty factor berbasis web. Matics, 11(1), 27. https://doi.org/10.18860/mat.v11i1.7673
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv Preprint ArXiv:1704.04861.
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., & Vasudevan, V. (2019). Searching for MobileNetV3. Proceedings of the IEEE/CVF International Conference on Computer Vision, 1314–1324.
Lestari, Z., Zulkarnain, & Sijid, S. A. (2021). Diabetes melitus: Review etiologi, patofisiologi, gejala, penyebab, cara pemeriksaan, cara pengobatan dan cara pencegahan. UIN Alauddin Makassar, November, 237–241.
Mustofa, A., Ulfa, N. M., & Suryandari, M. (2018). Profil peresepan penyakit mata glaukoma pada pasien BPJS rawat jalan (Studi dilaksanakan di RS Mata Masyarakat Jawa Timur periode Januari - Desember 2015). Journal of Pharmacy and Science, 1(1), 27–33. https://doi.org/10.53342/pharmasci.v1i1.57
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Suyuti, M. (2023). Pengembangan model klasifikasi mata tertutup dan terbuka dalam identifikasi kelelahan menggunakan arsitektur Mobile CNN.
Winnarto, M. N., Mailasari, M., & Purnamawati, A. (2022). Klasifikasi jenis tumor otak menggunakan arsitektur MobileNet V2. Jurnal SIMETRIS, 13(2), 1–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Uranus : Jurnal Ilmiah Teknik Elektro, Sains dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.