Penerapan Teknologi CNN Dalam Proses Pendeteksi Kematangan Buah Stroberi

Authors

  • Zahrotul Ilmi Wijayanti Universitas Muhammadiyah Ponorogo

DOI:

https://doi.org/10.61132/uranus.v2i3.192

Keywords:

Strawberry Fruit, Image Processing, CNN (Convolution Neural Network)

Abstract

The process of manually identifying fruits to determine ripe and unripe can affect the production and quality of the food and beverages themselves. The CNN method is able to group images and analyze images based on objects. Therefore, it is necessary to conduct research using the CNN method on the ripeness of strawberries. This study aims to determine the level of maturity of strawberries during harvest time. The accuracy graph shows that the model is not only capable of learning the training data well but can also generalize well to the validation data. In contrast, the validation accuracy graph starts from 0.825 in the 0th epoch and rises consistently until it reaches 0.975 in the 30th epoch. Both charts remained stable above those values throughout the training period. Overall, the development of the CNN model for the detection of strawberry ripeness resulted in excellent performance. The model achieved the lowest loss of 0.0383 and an accuracy as high as 98% on the validation data, demonstrating a strong ability to accurately predict between ripe and unripe strawberries.

References

Aminullah, M. (2024). Klasifikasi chest X-ray image processing COVID-19 menggunakan metode Convolutional Neural Network dengan arsitektur Visual Geometri Group 16 (VGG 16). JSR: Jaringan Sistem Informasi Robotik, 8(1), 68–72.

Ananda, T. P., Widyasari, S. V., Muttaqin, M. I., & Stefanie, A. (2023). Identifikasi tingkat kematangan buah pepaya menggunakan metode Convolutional Neural Network (CNN). JATI (Jurnal Mahasiswa Teknik Informatika, 7(3), 2094–2097.

Areni, I. S., Amirullah, I., & Arifin, N. (2019). Klasifikasi kematangan stroberi berbasis segmentasi warna dengan metode HSV. Jurnal Penelitian Enjiniring, 23(2), 113–116.

Azmi, K., Defit, S., & Sumijan, S. (2023). Implementasi Convolutional Neural Network (CNN) untuk klasifikasi batik tanah liat Sumatera Barat. Jurnal Unitek, 16(1), 28–40.

Bimanjaya, A., Handayani, H. H., & Darminto, M. R. (2021). Ekstraksi tapak bangunan dari orthophoto menggunakan model Mask R-CNN (Studi kasus: Kelurahan Darmo, Kota Surabaya). Jurnal Teknik ITS, 10(2), C198–C203.

Herdianto, H. (2022). Klasifikasi objek menggunakan metode Convolutional Neural Network (CNN). SNASTIKOM, 1(01), 330–336.

Hermawan, E. (2021). Klasifikasi pengenalan wajah menggunakan masker atau tidak dengan mengimplementasikan metode CNN (Convolutional Neural Network). Jurnal Industri Kreatif Dan Informatika Series (JIKIS), 1(1), 33–43.

Jumadi, J., Yupianti, Y., & Sartika, D. (2021). Pengolahan citra digital untuk identifikasi objek menggunakan metode hierarchical agglomerative clustering. JST (Jurnal Sains Dan Teknologi, 10(2), 148–156.

Lauw, K. O., Santoso, L. W., & Intan, R. (2020). Identifikasi jenis anjing berdasarkan gambar menggunakan Convolutional Neural Network berbasis Android. Jurnal Infra, 8(2), 37–43.

Mahardika, I. K., Bektiarso, S., Santoso, R. A., Novit, A., Saiylendra, R. B., & Dewi, R. K. (2023). Analisis peran suhu pada pertumbuhan dan perkembangan tanaman stroberi. Phydagogic: Jurnal Fisika Dan Pembelajarannya, 5(2), 86–91.

Puspaningtyas, M., Yulia, E., & Farazila, F. R. (2022). Pemanfaatan buah stroberi dalam rangka menunjang pengembangan produk pangan di Desa Pandanrejo. Jumat Pertanian: Jurnal Pengabdian Masyarakat, 3(2), 92–95.

Susanto, P. C., Arini, D. U., Yuntina, L., Soehaditama, J. P., & Nuraeni, N. (2024). Konsep penelitian kuantitatif: Populasi, sampel, dan analisis data (sebuah tinjauan pustaka). Jurnal Ilmu Multidisiplin,

Published

2024-07-01

How to Cite

Zahrotul Ilmi Wijayanti. (2024). Penerapan Teknologi CNN Dalam Proses Pendeteksi Kematangan Buah Stroberi. Uranus : Jurnal Ilmiah Teknik Elektro, Sains Dan Informatika, 2(3), 01–12. https://doi.org/10.61132/uranus.v2i3.192

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.