Analisis Peramalan Permintaan dalam Memaksimalkan Manajemen Rantai Pasok Menggunakan Metode Moving Average
DOI:
https://doi.org/10.61132/mars.v2i4.222Keywords:
Demand Forecasting, Supply Chain Management, Weighted Average, Time SeriesAbstract
Forecasting demand for screen-printed clothing products at the UMKM "D'mitz Screen Printing" in Sobrah Village, Wungu District, Madiun Regency helps with production control planning to maximize supply chain management for screen-printed clothing products. To predict future product demand, it is very important for UMKM to forecast market demand. Forecasting future demand is very important to avoid sales prediction errors that can cause waste, such as increased production costs due to sales predictions being too large, or stock outs due to sales predictions being too small, which results in customers having to wait longer to get the goods they want. Based on this problem, the UMKM "D'mitz Screen Printing" carried out a demand forecasting analysis for screen printed clothing with the aim of reducing waste and maximizing value. Forecasting demand for screen printed clothing for the next five months using time series analysis and moving average methods. Forecasting results for the period March 2022 to February 2023 show sequential forecasting values of 3266.67; 3300; 3250; 3283.33; 3233.33; 3316.67; 3333.33; 3372.22; 3305.56; and 3272.22. From the Mean Absolute Error (MAE) and Mean Square Error (MSE) calculations that have been carried out, the MAE value is 94.44 and the MSE value is 16018.593.
References
Anik Sudarismiati, & Mery Tridiah Sari. (2016). Analisis peramalan penjualan untuk menentukan rencana produksi pada UD Rifa’I. Jurnal Ekonomi dan Bisnis GROWTH, 14(2), 17–30. https://unars.ac.id/ojs/index.php/growth-journal/article/view/176/132
Anggrawan, A., Hairani, H., & Azmi, N. (2022). Prediksi penjualan produk Unilever menggunakan metode regresi linear. Jurnal Bumigora Information Technology (BITe), 4(2), 123–132. https://doi.org/10.30812/bite.v4i2.2416
Ayuni, G. N., & Fitrianah, D. (2019). Penerapan metode regresi linear untuk prediksi penjualan properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321
Fadhilah, M., Martanto, M., & Ali, I. (2023). Prediksi jumlah produksi sablon tahun menggunakan algoritma regresi linear di Nolbas SVNR. INTERNAL (Information System Journal), 6(1), 22–32. https://doi.org/10.32627/internal.v6i1.688
Irmayani, N. W. D. (2024). Supply chain management system analysis in improving product quality at PT. Kaya Kreasi Indonesia. Indonesian Journal of Applied and Industrial Sciences (ESA), 3(1), 1–16. https://doi.org/10.55927/esa.v3i1.7697
Khamid, A., & Suyatno, D. F. (2021). Rancang bangun sistem informasi peramalan penjualan pada Songkok Palapa Gresik dengan menggunakan metode time-series berbasis website. Jeisbi, 02(02).
Nurdina, A., Aryani, D., Venita, E., & Astiti, S. (2022). Analisis peramalan permintaan Golang-Galing dalam memaksimalkan manajemen rantai pasok menggunakan metode weighted moving average. JURIKOM (Jurnal Riset Komputer), 9(4), 1167–1173. https://doi.org/10.30865/jurikom.v9i4.4551
Pongoh, M. A. (2016). Analisis perencanaan manajemen rantai pasok. Emba, 4(3), 695–704.
Rachman. (2023). Minimum order quantity (MOQ) pada pemesanan barang. Diakses dari https://teknik-industri-rachman.blogspot.com/
Robial, S. M. (2018). Perbandingan model statistik pada analisis metode peramalan time series (Studi kasus: PT. Telekomunikasi Indonesia, Tbk Kandatel Sukabumi). Jurnal Ilmiah SANTIKA, 8(2), 1–17.
Saptaria, L. (2016). Peramalan permintaan produk cincau hitam dalam memaksimalkan SCM (Supply Chain Management). Jmk, 1(3), 247–256.
Syabaniah, R. N., Farlina, Y., & Nurlaelasari. (2018). Perancangan sistem transaksi pemesanan perusahaan jasa sablon. Swabumi, 6(2), 159–164.
Wahyu Susanti, S., Beverly Topah, Y., Ayu Mkd, D., Rajagukguk, R., & Madiistriyatno, H. (2023). The role of innovative leadership styles in improving employee performance at UPTD Pacing Health Center, Karawang Regency. Journal of Scientech Research and Development, 5(1). https://idm.or.id/JSCR/index.php/JSCR
Wiharja, A. F., & Ningrum, H. F. (2020). Analisis prediksi penjualan produk PT. Joenoes Ikamulya menggunakan 4 metode peramalan time series. Jurnal Bisnisman : Riset Bisnis dan Manajemen, 2(1), 43–51. https://doi.org/10.52005/bisnisman.v2i1.23
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.