Perbandingan Efektivitas Cairan Pendingin pada Liquid Cooling System dengan Website Simscale untuk Mengurangi Biaya Produksi dan Operasional
DOI:
https://doi.org/10.61132/mars.v2i4.265Keywords:
Cooling Fluid, Thermal Efficiency, Ethylene Glycol, Propylene Glycol, Silicone Oil, Cooling System DesignAbstract
The rapid development of technology demands solutions to optimise heat management for electronic components. Through this study, the researchers evaluated the effectiveness of various types of coolants in a liquid cooling system for electrical equipment, especially CPUs. Using design simulations conducted through SolidWorks software, this research aims to optimise the flow rate and selection of coolant type to achieve maximum thermal efficiency and reduce production and operational costs. The simulation results show that water is the most efficient coolant with significant temperature reduction compared to Ethylene Glycol (EG), Propylene Glycol (PG), and silicone oil. Water shows a temperature drop of 11.76°C, while EG and PG show a temperature drop of 8.82°C and 7.35°C respectively and silicone oil shows a temperature drop of 4.9°C. It can be seen from the simulation that water shows the most effective temperature reduction compared to EG, PG, and Silicone Oil.
References
Azar, K. (2020). Optimasi Pendinginan dalam Sistem Industri. London: Industrial Cooling Journal.
Azar, K. (2020). Thermal Measurements in Electronics Cooling. United States: CRC Press.
Gookin, D. (2020). Android For Dummies. United States: Wiley.
Gookin, D. (2020). Sistem Pendinginan Elektronik. San Francisco: Electronic Cooling Press.
Habeeb, H., Mohan, A., Norani, N., Azman, M., & Abdullah, M. H. H. (2020). Analysis of engine radiator performance at different coolant concentrations and radiator materials. International Journal of Recent Technology and Engineering, 8(6), 2277-3878.
Hadipour, A., Zargarabadi, M. R., & Rashidi, S. (2021). An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 164, 867-875. https://doi.org/10.1016/j.renene.2020.11.055
Harun, M. A., & Che Sidik, N. A. (2020). A Review on Development of Liquid Cooling System for Central Processing Unit (CPU). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78(2), 98–113. https://doi.org/10.37934/arfmts.78.2.98113
Hossay, P. (2019). Automotive Innovation: The Science and Engineering Behind Cutting-Edge Automotive Technology. United States: CRC Press.
Hossay, P. (2019). Teknologi Elektro dan Pengelolaan Panas. New York: Tech Publications.
Liu, J. (2022). Advanced Liquid Metal Cooling For Chip, Device And System. Singapore: World Scientific Publishing Company.
Liu, J. (2022). Pendinginan untuk Perangkat Elektronik Daya Tinggi. Beijing: High-Performance Electronics Publishing.
Muhammad, F., Amjad, M., Tahir, Z. U. R., Anwar, Z., Arslan, M., Mujtaba, A., Riaz, F., Imran, S., Razzaq, L., Ali, M., Filho, E. P. B., & Du, X. (2022). Design and analysis of liquid cooling plates for different flow channel configurations. Thermal Science, 26(2 Part B), 1463-1475.
Naduvilakath-Mohammed, F. M., Jenkins, R., Byrne, G., Robinson, A. J. (2023). Closed loop liquid cooling of high-powered CPUs: A case study on cooling performance and energy optimization. Case Studies in Thermal Engineering, 50, 103472. https://doi.org/10.1016/j.csite.2023.103472
Nath, P. D., & Islam, M. A. (2020). Investigation on the Performance Test on Liquid Cooling System for CPU of Desktop Computer Cost Effective Enhancement. Khulna, Bangladesh: International Conference on Mechanical, Industrial, and Energy Engineering.
Nishida, R., Zhong, J., & Shinshi, T. (2022). Forced liquid cooling of piezoelectric stack actuator utilizing silicone oil. Precision Engineering, 75, 120-128.
Ouchi, M., et al. (2012). Thermal management systems for data centers with liquid cooling technique of CPU. In 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (pp. 790-798). San Diego, CA, USA: IEEE. https://doi.org/10.1109/ITHERM.2012.6231507
Rahman, M. H., Warneke, H., Webbert, H., Rodriguez, J., Austin, E., Tokunaga, K., ... & Menezes, P. L. (2021). Water-based lubricants: Development, properties, and performances. Lubricants, 9(8), 73. https://doi.org/10.3390/lubricants9080073
Shahi, P., Saini, S., Bansode, P., & Agonafer, D. (2021). A comparative study of energy savings in a liquid-cooled server by dynamic control of coolant flow rate at server level. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(4), 616-624.
Shia, D., Yang, J., Sivapalan, S., Soeung, R., & Amoah-Kusi, C. (2021). Corrosion study on single-phase liquid cooling cold plates with inhibited propylene glycol/water coolant for data centers. Journal of Manufacturing Science and Engineering, 143(11), 111012.
Soltex, Inc. (2023). Liquid Cooling Theory and Application in System Design. United States.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.