Implementation of the Naive Bayes Algorithm on Malaria Data Set Using Rapid Milner
DOI:
https://doi.org/10.61132/mars.v2i5.386Keywords:
Naïve Bayes, malaria, prediction, health center, data miningAbstract
Medical record data can be used as a benchmark and comparison in the health business to ascertain the rate at which a disease is developing in a given area. It would be beneficial, though, if this data could be transformed into useful information, like illness forecasts. Infectious diseases like malaria are common in tropical and subtropical regions. West Sumba Regency is the region with the highest number of malaria cases, and this figure rises year. Of the different Puskesmas labor locations, Lolo Wano Health Center has the largest number of positive cases of malaria. In order to apply information system technology and prevent malaria early, research was done at the Lolo Wano Community Health Center to predict malaria using the Naïve Bayes approach. This is because the Community Health Center does not currently have a malaria prediction system. Six of the 16 features in the patient dataset—a total of 27 patient data—were malaria symptoms. When there are suitable illness indicators, positive predictions are produced using the outcomes of Naïve Bayes computations. Before the patient proceeds with a direct medical evaluation, these anticipated results may be utilized as a provisional approximation. Naïve Bayes, Center, Prediction, Malaria
References
Mukti, R. A. (2021). Sistem Informasi Jurnal Elekronik Berbasis Web. Jurnal Teknoinfo, 15(1), 38. https://doi.org/10.33365/jti.v15i1.473
Purnamasari, A. I., & Ali, I. (2024). Analisis Sentien Komentar Berita Detik . Com Menggunakan Algoritma Suport Vektor Machine ( Svm ). 8(3), 3175–3181.
Pustaka, T. (2024). I Analisis Sentimen Pengguna Aplikasi Twitter Yang Mengandung Ujaran Kebencian. 8(3), 3170–3174.
Wahyudin, Y., & Rahayu, D. N. (2020). Evaluasi Teknik Pengembangan Sistem Informasi Berbasis Website: Survei Literatur . Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 15(3), 26–40. https://doi.org/10.35969/interkom.v15i3.74
Ridwan Andri Prasetio, Gergorius Kopong Pati, & Katarina Yunita Riti. (n.d.). IMPLEMENTATION OF THE NAIVE BAYES ALGORITHM ON MALARIA DATA SET USING RAPID MILNER. Universitas Stella Maris Sumba.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.