Ekstrasi Fitur Dan Kontur Pada Kain Tenun Sabu Menggunakan Metode GLCM (Gray Level Co-occurrence Matrix)
DOI:
https://doi.org/10.61132/mars.v2i3.99Keywords:
Digital Image Processing, GLCM, Woven Fabric, TensorFlowAbstract
Sabu woven fabric is one of the cultural heritages of Sabu Island. In addition to being a cultural heritage, Sabu woven fabric is one of the handicrafts that still exist today which is preserved by Sabu women. Based on its manufacture, the classification process of Sabu woven fabric is based on color or motif identification. However, the classification process is not an easy process, because the classification process requires time and experts in the field of Sabu woven fabric. In addition to the classification process, the wider community also does not get much information about Sabu woven fabric clearly, because it is necessary to introduce the type of Sabu woven fabric, so that people can know or recognize the type of Sabu ikat woven fabric based on its type. Digital image processing techniques are utilized to build a system that can overcome the problems faced. Furthermore, image feature extraction will be carried out using gray level co-occurrence matrix (GLCM) with 4 features namely contrast, correlation, energy, and homogeneity with angles of 0°, 45°, 90°, and 135°. Each GLCM feature shows the same value even though the original image is rotated. After image feature extraction, the extracted data will be classified using the TensorFlow library. From these results it can be concluded that the program succeeded in selecting the type of Sabu ikat woven fabric class.
References
Agrilla, J., Hutama, K., & Sunarya Y.Y., (2023). Akulturasi Material Tenun Sabu Serat Tencel, Jurnal Seni dan Reka Rancang. Volume 6, Nomor 1, halaman 45-60, November, 2023. DOI: 10.25105/jsrr.v6i1.17477
Arini, A., Wardhani, L., & Octaviano, D., (2020). Perbandingan Seleksi Fitur Term Frequency & Tri-Gram Character Menggunakan Algoritma Naïve Bayes Classifier (Nbc) Pada Tweet Hashtag #2019gantipresiden.
Baso, B & Suciati, N., (2020). Temu Kembali Citra Tenun Nusa Tenggara Timur Menggunakan Ekstraksi Fitur Yang Robust Terhadap Perubahan Skala, Rotasi Dan Pencahayaan. Jurnal Teknologi Informasi dan Ilmu Komputer, Vol. 7, No. 2, April 2020, hlm. 349-358. DOI: 10.25126/jtiik.202072002
Gusmao, O.D.J., & Kaesmetan, Y.R., (2020). Klasifikasi Hasil Ekstrasi Tenun Ikat Sumba Dengan Metode Fuzzy K-Nearest Neighbor, Seminar Nasional & Konferensi Ilmiah Sistem Informasi, Informatika & Komunikasi,
Istikomayanti, Y., et al., (2023). Potensi Tenun Ikat Sebagai Sumber Belajar Berbasis Etnosains.
Kaya, J.U., (2022). Klasifikasi Motif Kain Tenun menggunakan K-Nearest Neighbor Berdasarkan Gray Level Co-occurrence Matrix.
Kusumawati, Y., et al., (2020). Klasifikasi Batik Kudus Berdasarkan Pola Menggunakan K-NN Dan GLCM, Seminar Nasional LPPM – Universitas Muhammadiyah Purwokerto.
Lamabelawa, MIJ., & Katemba, P., (2015). Ekstraksi Fitur Citra Tenun Ikat NTT Berbasis Deteksi Tepi. In Prosiding SEMMAU 2015. ISBN : 978-602-73628-0-2
Maliki., & Irfan., (2020) Segmentasi Citra Digital, Repositori UNIKOM.
Nuraini, S., & Falah, A.M., (2022). Eksistensi Kain Tenun di Era Modern.
Saito, T., & Rehmsmeire, M., (2015) The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets.
Setiawan, B., & Suwarningdyah, R.R.N., (2014). Strategi Pengembangan Tenun Ikat Kupang Provinsi Nusa Tenggara Timur.
Setiohardjo, N.M., & Harjoko, A., (2014). Analisis Tekstur untuk Klasifikasi Motif Kain (Studi Kasus Kain Tenun Nusa Tenggara Timur).
Sooai, I.P., & Qisty, S.N., (2021). Sistem Religi Dan Kepercayaan Jingitiu Di Kabupaten Sabu Raijua.
Surya, R.A., Fadlil, A., & Yudhana A., (2017). Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor Untuk Klasifikasi Citra Batik Pekalongan.
Utami, Y.R.W., & Sosyanto, T., (2014). Analisis Unjuk Kerja Metode Klasifikasi Pada .Aplikasi Pengenalan Wajah, Seminar Nasional Ilmu Komputer,
Wulandari, M.R., & Nuhamara, Y.T.I., (2021). Eksplorasi Tenun Ikat Sumba Timur Ditinjau Dari Etnomatematika
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.