Klasifikasi Suara Instrumen Musik Tiup Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.61132/merkurius.v2i4.119Keywords:
Machine Learning, Convolution Neural Network, MFCC, Brass Instrument, ClassificationAbstract
This research explores the classification of brass instrument sounds using Convolutional Neural Network (CNN) combined with Mel-Frequency Cepstrum Coefficient (MFCC) feature extraction. This research aims to improve the accuracy of brass instrument sound recognition by utilizing CNN's ability to process audio data. Through experiments conducted with different audio durations and variations in CNN model architecture, this study evaluates the impact of dataset separation and model design on classification performance. The results show that dataset duration and CNN model architecture significantly affect classification accuracy, with the highest accuracy achieved in the scenario using 30 seconds of audio duration with an accuracy value of 84%. In addition, experiments varying the number of convolution layers in the CNN model show that the selection of the model architecture plays an important role in classification performance. Overall, this research contributes to advancing the field of audio classification by providing insight into the optimal dataset duration and model architecture for wind instrument speech recognition using CNNs.
References
Chen, H., Wang, Y., & Fan, C. (2021, March). A convolutional autoencoder-based approach with batch normalization for energy disaggregation. The Journal of Supercomputing, 77, 2961-2978.
Falola, P. B., & Akinola, S. O. (2021, August). Music genre classification using 1D convolutional neural network. International Journal on Human Computing Studies, 3(6), 3-21.
Görtler, J., Hohman, F., Moritz, D., Wongsuphasawat, K., Ren, D., Nair, R., ... Patel, K. (2022). Neo: Generalizing confusion matrix visualization to hierarchical and multi-output labels. CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1-13.
Jo, T. (2021). Machine learning foundations: Supervised, unsupervised, and advanced learning. Cham: Springer International Publishing.
Mahanta, S. K., Khilji, A. F. U. R., & Parkay, P. (2021). Deep neural network for musical instrument recognition using MFCCs. Computacion y Sistemas, 25(2), 351-360.
Nurhakiki, J., & Yahfizham. (2024). Studi kepustakaan: Pengenalan 4 algoritma pada pembelajaran deep learning beserta implikasinya. Jurnal Pendidikan Berkarakter, 2(1), 270-281.
Purnama, J. J., & Rahayu, S. (2022, June). Klasifikasi konsumsi energi industri baja menggunakan teknik data mining. Jurnal Teknoinfo, 16(2), 395-407.
Ramadhani, F., Satria, A., & Salamah. (2023, December). Implementasi algoritma convolutional neural network dalam mengidentifikasi dini penyakit pada mata katarak. Jurnal Teknik Informatika, 167-175.
Safitri, P. W., & Karyawati, A. E. (2022, November 1). Kombinasi metode MFCC dan KNN dalam pengenalan emosi manusia melalui ucapan. Jurnal Nasional Teknologi Informasi dan Aplikasinya, 1, 133-140.
Solanki, A., & Pandey, S. (2022). Music instrument recognition using deep convolutional neural networks. International Journal of Information Technology, 1659-1668.
Su, Y. (2023). Instrument classification using different machine learning and deep learning methods. Highlights in Science, Engineering and Technology, 136-142.
Zer, P., Hayadi, B., & Damanik, A. (2022, August 15). Pendekatan machine learning menggunakan algoritma C4.5 berbasis PSO dalam analisa pemahaman pemrograman berbasis website. Jurnal Informatika dan Teknik Elektro Terapan, 10(3), 150-156.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.