Pengenalan Dan Klasifikasi Jenis Buah Menggunakan Metode CNN Secara Sederhana Dengan Menggunakan Google Colab

Authors

  • Edwin Febrywinata Universitas Muhammadiyah Ponorogo

DOI:

https://doi.org/10.61132/merkurius.v2i4.162

Keywords:

Image classification, tensorflow, CNN, google colab, machine learning

Abstract

This research discusses the implementation and evaluation of the Convolutional Neural Network (CNN) convolutional neural network model for classification of fruit types, specifically to differentiate between Banana and Papaya. The CNN model used consists of several convolutional, pooling, and fully connected (dense) layers designed to extract features and perform binary classification. Data augmentation is applied to the training set to increase data variation and prevent overfitting. The image data used is normalized to speed up training convergence. The model was trained using the Adam optimizer and the binary crossentropy loss function for 20 epochs. Performance evaluation was carried out using the validation set. The results show that the model is able to effectively classify fruit images with a high level of accuracy. Predictions are made by uploading images, resizing them, and normalizing them before using the model for predictions. The classification threshold was set at 0.4, where a predicted probability greater than or equal to 0.4 was classified as Banana and a probability less than 0.4 was classified as Papaya. This research shows that the CNN model can be used effectively for binary image classification tasks and can be extended to classify more types of fruit with appropriate data adjustments and model architecture.

References

"05111850010020-Master_Thesis.pdf." (n.d.). Retrieved June 19, 2024, from https://repository.its.ac.id/73567/1/05111850010020-Master_Thesis.pdf

"Apa itu Google Colab? Pengertian dan contoh 2024 | RevoU." (n.d.). Retrieved June 10, 2024, from https://revou.co/kosakata/google-colab

"Apa Itu Tensorflow?" (n.d.). School of Information Systems. Retrieved June 10, 2024, from https://sis.binus.ac.id/2024/01/18/apa-itu-tensorflow/

"Google Colab: Definisi, Manfaat, Hingga Cara Menggunakan." (n.d.). Retrieved June 10, 2024, from https://digitalskola.com/blog/home/google-colab

"Pengertian dan Cara Kerja Algoritma Convolutional Neural Network (CNN)." (2022, July 29). Retrieved from https://www.trivusi.web.id/2022/04/algoritma-cnn.html

"PENGGUNAAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK MENDELINEASI PATAHAN PADA DATA SEISMIK 3D." (n.d.). Retrieved June 9, 2024, from https://library.universitaspertamina.ac.id/xmlui/handle/123456789/1280

Maulana, F. F., & Rochmawati, N. (2019). "Klasifikasi citra buah menggunakan convolutional neural network." Journal of Informatics and Computer Science (JINACS), 1(02), 104-108.

Media, K. C. (2023, January 29). "Pengertian Google Drive dan Fungsinya, Layanan Penyimpanan File Google Berbasis Cloud." KOMPAS.com. Retrieved from https://tekno.kompas.com/read/2023/01/29/10150057/pengertian-google-drive-dan-fungsinya-layanan-penyimpanan-file-google-berbasis

Putra, W. S. E. (2016). "Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101." J. Tek. ITS, 5(1). doi: 10.12962/j23373539.v5i1.15696

Published

2024-06-22

How to Cite

Edwin Febrywinata. (2024). Pengenalan Dan Klasifikasi Jenis Buah Menggunakan Metode CNN Secara Sederhana Dengan Menggunakan Google Colab. Merkurius : Jurnal Riset Sistem Informasi Dan Teknik Informatika, 2(4), 185–193. https://doi.org/10.61132/merkurius.v2i4.162

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.