Sistem Monitoring Detak Jantung Menggunakan Pulse Heart Rate Sensor dan Nodemcu
DOI:
https://doi.org/10.61132/merkurius.v3i2.712Keywords:
Heartrate, Cardiovascular, NodeMCU, PulseSensor, WebsiteAbstract
Heart rate is an important indicator of overall heart health. Changes in heart rate can indicate underlying health problems, even before other symptoms appear, especially for the elderly population who are vulnerable to cardiovascular issues such as heart disease, stroke, and arrhythmia. Therefore, a heart rate monitoring device is needed that can monitor heart rate and allow early detection of such cardiovascular disorders. Along with modern technological advancements, heart rate monitoring devices are now available for everyone, but heart signal diagnosis still needs to be conducted by doctors or medical professionals. A heart monitor can be made using a heart rate sensor attached to a NodeMCU device. The Pulse Sensor, which functions to detect human heartbeats, can be placed in three measurement locations: on the finger, hand, or forehead. The data is then processed by NodeMCU, and the measurement results, which are Beats Per Minute (BPM), will be displayed on a website and stored in a database. The test results show that the average heart rate measurement using the device is 74 BPM, while the manual measurement is 74 BPM, with an accuracy of 97.74%, and it takes 60 seconds to display the average Beats Per Minute (BPM).
References
Andika, T. H., & Anisa, N. S. (2020). Sistem identifikasi citra daun berbasis segmentasi dengan menggunakan metode K-Means Clustering. Journal Homepage, 2(1).
Asmi, A. S., & Bahar, B. (2023). Model monitoring detak jantung berbasis smartphone menggunakan Nodemcu ESP8266. Progresif: Jurnal Ilmiah Komputer, 19(1), 299–308.
Darmi, Y., & Setiawan, A. (2016). Penerapan metode clustering K-Means dalam pengelompokan penjualan produk. Jurnal Media Infotama, 12(2).
Harianto, B., Hidayat, A., & Hulu, F. N. (2021). Analisis penggunaan sensor MAX30100 pada sistem pendeteksi detak jantung berbasis IoT-BLYNK. Seminar Nasional Teknologi (SemanTECH), 2021, 238–245.
Hermansyah, A., Hardiyanti, R., & Prasetyo, A. P. (2022). Sistem perekam detak jantung berbasis Internet of Things (IoT) dengan menggunakan pulse heart rate sensor. JTEV (Jurnal Teknik Elektro dan Vokasional, 8(2), 338. https://doi.org/10.24036/jtev.v8i2.116677
Hutabarat, N. K., Hulu, D. R., & Laia, Y. (2019). Deteksi detak jantung berbasis web. Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 3(1), 13–16. https://doi.org/10.34012/jusikom.v3i1.554
Ikhsani, R., Purwiyanti, S., & Fitriawan, H. (2022). Monitoring pengukur detak jantung dan suhu tubuh pada pasien berbasis Internet of Things. Jurnal Informatika dan Teknik Elektro Terapan, 10(2), 96–101. https://doi.org/10.23960/jitet.v10i2.2441
Man, F. H. D. K., & Sutopo, J. (2023). Rancang bangun aplikasi monitoring latihan kebugaran jasmani berbasis Internet of Things. Jurnal Komputer Terapan, 9(2), 173–181. https://doi.org/10.35143/jkt.v9i2.6183
Masthura, M., Nasution, M. I., & Sitorus, R. (2023). Alat monitoring suhu dan detak jantung manusia berbasis Internet of Things menggunakan Blynk. Journal Online of Physics, 9(1), 1–5. https://doi.org/10.22437/jop.v9i1.25905
Masykuroh, K., Kurnianto, D., & Rozi, M. F. (2021). Rancang bangun monitoring denyut jantung dan suhu pasien berbasis Internet of Things. Dinamika Rekayasa, 17(2), 87. https://doi.org/10.20884/1.dr.2021.17.2.385
Munir, R. (2019). Segmentasi citra. Informatika.stei.itb.ac.id, 1-49.
Orisa, M., & Hidayat, T. (2019). Analisis teknik segmentasi pada pengolahan citra. Jurnal MNEMONIC, 2(2).
Pradana, D. R., Sari, M. I., & Rimasa, D. (2023). Monitoring denyut nadi dan suhu tubuh menggunakan pulse sensor dan sensor suhu pada atlet anggar KONI Kota Bandung. eProceeding of Applied Science, 9(6), 3042–3048.
Pratama, S. A., & Setiabudi, D. H. (2020). Sistem pemantauan pasien berbasis IoT menggunakan ESP8266 dan Arduino. Jurnal Infra Petra, 7.
Purnomo, D. C., Sandi, E., & Yusro, M. (2022). Rancang bangun sistem monitoring detak jantung (Electrocardiogram), suhu tubuh, denyut nadi berbasis Nodemcu ESP32 dan ESP8266 dengan menggunakan wearable device. Jurnal Teknik Elektro, 5(1), 1–9.
Rulaningtyas, R., Suksmono, A. B., Mengko, T. L. R., & Saptawati, G. A. P. (2015). Segmentasi citra berwarna dengan menggunakan metode clustering berbasis patch untuk identifikasi Mycobacterium tuberculosis. Jurnal Teknik Elektro, 17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.