Implementasi Data Mining Prediksi Perminatan Jurusan Siswa pada SMK Negeri 1 Waikabubak dengan Metode Algoritma C4.5

Authors

  • Marten Sudi Universitas Stella Maris Sumba
  • Gergorius Kopong Pati Universitas Stella Maris Sumba
  • Lidia Lali Momo Universitas Stella Maris Sumba

DOI:

https://doi.org/10.61132/neptunus.v2i4.410

Keywords:

Data Mining, C4.5 Algorithm Method, Student

Abstract

Admission of new students to an educational institution is an activity that is always carried out every new academic year, where prospective new students always increase from year to year (Muwardah and Pramunendar, 2015). Admission of students can be held from elementary to middle school, from middle school to high school / vocational school. The focus of this research is the registration of new students at SMK. As is known, SMK is a Vocational High School or abbreviated as (SMK) and where there are many majors provided which ultimately makes prospective new students confused about which major is right for them because will take a long time.. Based on C4.5 as a Classification Algorithm: C4.5 is a popular algorithm for building decision trees. It works by dividing a dataset into smaller subsets based on attribute values, thus forming an easy-to-understand tree structure. Classification results using decision trees provide a clear visualization of the decision-making process and the variables that contribute to student choices.

References

Ainurrohmah. (2021). Akurasi algoritma klasifikasi pada software RapidMiner dan Weka. Prisma, 4, 493–499. Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/

Aulia, D., & Budayawan, K. (2023). Penerapan algoritma C4.5 untuk klasifikasi jurusan siswa SMA Negeri 6 Padang. Jurnal Vocational Teknik Elektronika dan Informatika, 11(4), 1–9. Retrieved from http://ejournal.unp.ac.id/index.php/voteknika/index

Hijrah, M., & Adri. (2022). Analisis RapidMiner dan Weka dalam memprediksi kualitas kinerja karyawan menggunakan metode algoritma C4.5. Jurnal Teknik Informatika dan Sistem Informasi, 9(2), 1655–1665.

Jufani, M. N., Zahro, H. Z., & Achmadi, S. (2023). Pengembangan penentuan sistem pendukung keputusan penjurusan siswa di SMAN 1 Sanggar menggunakan metode Analytical Hierarchy Process (AHP) dan Technique for Order Preference By Similarity To Ideal Solution (TOPSIS). JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 945–952. https://doi.org/10.36040/jati.v6i2.5405

Nanang. (2022). Analisis perbandingan algoritma data mining metode decision tree C4.5 dengan Naïve Bayes dalam penjurusan siswa (studi kasus MAN 1 Kota Tangerang Selatan). Scientia Sacra: Jurnal Sains, Teknologi dan Masyarakat, 2(1), 44–61.

Paul, V. M., Indra, G. M., Damanik, B. E., Parlina, I., & Saputra, W. (2021). Dalam menentukan kelayakan penerimaan bantuan bedah rumah pada Desa Tiga Dolok. STIKOM Tunas Bangsa Pematangsiantar, 1, 396–409.

Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan machine learning dalam berbagai bidang: Review paper. Indonesian Journal of Computer and Information Technology, 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951

Soleh, M., Andani, S. R., & Qurniawan, H. (2021). Algoritma C4.5 dalam mengklasifikasi tindak kejahatan yang sering terjadi di Kecamatan Siantar Barat Pematangsiantar. Jurnal Ilmiah, 2(5), 335–340.

Published

2024-10-10

How to Cite

Marten Sudi, Gergorius Kopong Pati, & Lidia Lali Momo. (2024). Implementasi Data Mining Prediksi Perminatan Jurusan Siswa pada SMK Negeri 1 Waikabubak dengan Metode Algoritma C4.5. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 2(4), 66–72. https://doi.org/10.61132/neptunus.v2i4.410

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.