Analysis of Customer Sentiment at Paga Lewu Store Using the Naive Bayes Clasifer Method
DOI:
https://doi.org/10.61132/neptunus.v1i4.558Keywords:
Navie, Bayes, ClassifierAbstract
Sentiment Analysis is a technique for extracting text data to obtain information about positive, neutral or negative sentiments. The purpose of sentiment analysis is given by internet users on social media to provide a personal assessment or opinion. Paga Lewu Shop that often gets user sentiment through social media is Paga Lewu Shop. The existence of consumer opinion sentiments about Paga Lewu Shop can be analyzed and utilized to obtain useful information for other customers and the Paga Lewu Shop. By using the Text Mining technique classification method, a sentiment will be known as positive, neutral or negative. One of the algorithms widely used in sentiment analysis is the Naïve Bayes classification method. This study uses the Naïve Bayes Classifier (NBC) method with tf-idf weighting accompanied by the addition of an emotion icon conversion feature (emoticon) to determine the existing sentiment class from tweets about the Paga Lewu Shop. The results of the study show that the Naïve Bayes method without additional features is able to classify sentiment with an accuracy value of 96.44%, while if the tf-idf weighting feature is added along with the conversion of emotion icons, the accuracy value can be increased to 98%.References
Ernawati, Siti, and Risa Wati. 2018. “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel.” Jurnal Khatulistiwa Informatika 6(1): 64–69.
Hendri, Rifwan. 2018. “No Title.” https://travel.tempo.co/read/1149739/enam-manfaat-traveling-di-kehidupan-yang-semakin-sibuk.
Mentari, Nurul Dyah, M Ali Fauzi, and Lailil Muflikhah. 2018. “Analisis Sentimen Kurikulum 2013 Pada Sosial Media Twitter Menggunakan Metode K-Nearest Neighbor Dan Feature Selection Query Expansion Ranking.” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya 2(8): 2739–43.
Salam, Abu, Junta Zeniarja, and Rima Septiyan Uswatun Khasanah. 2018. “Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia).” Prosiding SINTAK: 480–86.
Wilianto, L., Pudjiantoro, T. H., & Umbara, F. R. 2017. Analisis Sentimen Terhadap Tempat Wisata Dari Komentar Pengunjung Dengan Menggunakan Metode Naive Bayes Classifier Studi Kasus Jawa Barat. Jurnal Prosiding Snatif Vol. 4.
Liu, B. 2012. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies. California: Morgan & Claypool Publishers.
Kim, S. B., Han, K. S., Rim, H. C., & Myaeng, S. H. 2006. “Some effective techniques for naive bayes text classification.” IEEE transactions on knowledge and data engineering, 18(11), 1457- 1466.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.