Identifikasi Serangan DDOS Pada Jaringan Komputer Menggunakan Algoritma Artificial Neural Network

Authors

  • Kelik Sussolaikah Universitas PGRI Madiun
  • Pitrasacha Adytia STMIK Widya Cipta Darma
  • Wahyuni Wahyuni STMIK Widya Cipta Darma
  • Lisda Aulia Rahmi STMIK Widya Cipta Darma

DOI:

https://doi.org/10.61132/neptunus.v1i1.67

Keywords:

Implementation of Swallow Nest Quality, Wighted Product, TOPSIS

Abstract

DDOS (Distribute Denial of Service) is a type of structured attack. This attack has been around since 1990. DDoS attacks are capable of paralyzing servers by flooding network traffic and causing it to go down. To overcome this problem, the way to detect DDoS attacks has several methods and algorithms, one of which is the Artificial Neural Network algorithm and uses the Machine learning method due to the fast computing process, high accuracy, and this research uses the SKKNI research method Number 299 of 2020. The analysis was carried out uses training data from the latest dataset, namely CICIDS2017, which is a development of a previously existing dataset. DDoS attack detection testing using the confusion matrix method obtained bot precision of 0.99, recall of 0.99, and f1score of 0.99, 3

References

Dharma, M. A. A. (2014). Keamanan Jaringan Komputer “DOS, DDOS & cara penaggulangannya Disusun, (8053111064).

Muhammad, A. W. (2016). Analisis Statistik Log Jaringan Untuk Deteksi Serangan Ddos Berbasis Neural Network. Jurnal Ilmiah ILKOM, 8(Desember), 220–225. https://doi.org/10.13140/RG.2.2.19805.10723.

Mulyawan, Rifqi. (2019). “Mengenal Pengertian Smart me: Fungsi, Manfaat, Karakteristik, Kelebihan dan Kekurangannya”.

Python Software Foundation, (2019) "General Python FAQ," Python SoftwareFoundation, [Online]. Available: https://docs.python.org/3/faq/general.html

Rosandy. T. (2016). Perbandingan Metode Naive Bayes Classifier Dengan Metode Decision Tree (C4.5) Untuk Menganalisa Kelancaran Pembiayaan (Study Kasus: Kspps / Bmt Al-Fadhila). Jurnal TIM Darmajaya.

Simon, Hendra Son (2020) Penentuan Posisi Objek Berbasis Image Processing Dengan Menggunakan Metode Convolutional Neural Network. UIB Repository.

Yulianto, A., Sukarno, P., Suwastika, N.A. 2018. Improving AdaBoost-based Intrusion Detection System (IDS) Performance on CIC IDS 2017 Dataset. IOP Conf. Series: Journal of Physics: Conf. Series 1192 (2019) 012018.

Downloads

Published

2023-02-28

How to Cite

Kelik Sussolaikah, Pitrasacha Adytia, Wahyuni Wahyuni, & Lisda Aulia Rahmi. (2023). Identifikasi Serangan DDOS Pada Jaringan Komputer Menggunakan Algoritma Artificial Neural Network. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 1(1), 01–11. https://doi.org/10.61132/neptunus.v1i1.67

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.