Penerapan Metode Clustering Kecemasan Anak Terhadap Bullying
DOI:
https://doi.org/10.61132/saturnus.v2i3.182Keywords:
Bullying, Clustering, K-MeansAbstract
Bullying is a verbal or non-verbal bullying activity through the media (cyber bullying) or directly, carried out by a child or group of children against other children. Aggressive behavior such as bullying among teenagers results in problems such as anxiety. The problem at SMKN 2 Binjai in 2024 is the difficulty of identifying children's anxiety about bullying disorders because there is no strong reference as evidence for cases of bullying carried out by perpetrators against victims. So research is needed to cluster gender, type of bullying and children's anxiety levels, with many parties still not monitoring children's activities enough to see how big the impact is on children who experience bullying. The aim of this research is to determine gender, type of bullying and different levels of anxiety among children who experience bullying. Based on the results of grouping bullying cases using the K-Means algorithm, 3 clusters and 3 iterations were obtained, where cluster 1 contained 9 data. , cluster 2 has 4 data and cluster 3 has 7 data, so it can be concluded that bullying cases tend to occur in women who experience types of bullying in the form of cyber and psychological with a mild level of anxiety.
References
Arbaeti, E. E., Pardede, A. M. H., & Kadim, L. A. N. (2023). Application of K-Means Clustering Algorithm to analyze insurance company business (Case study: Pt. Jasindo Insurance). Journal of Mathematics and Technology (MATECH), 2(2), 173–192.
Buaton, R., Sundari, Y., & Maulita, Y. (2016). Clustering tindak kekerasan pada anak menggunakan algoritma K-Means dengan perbandingan jarak kedekatan Manhattan City dan Euclidean. MEANS (Media Informasi Analisa dan Sistem), 1(2), 47–53. https://doi.org/10.54367/means.v1i2.8
Fauziah, R., & Purnamasari, A. I. (2023). Implementasi algoritma K-Means pada kasus kekerasan anak dan perempuan berdasarkan usia. Hello World Jurnal Ilmu Komputer, 2(1), 34–41. https://doi.org/10.56211/helloworld.v2i1.232
Kristika, P., & Lestari, S. (2021). Gambaran kejadian bullying dan tingkat kecemasan anak usia sekolah di Sekolah Dasar Negeri 4 Jambangan Kelurahan Desa Jambangan Kecamatan Geyer Kabupaten Grobogan. Intan Husada: Jurnal Ilmiah Keperawatan, 9(2), 45–51. https://doi.org/10.52236/ih.v9i2.219
Mardi, Y. (2017). Data mining: Klasifikasi menggunakan algoritma C4.5. Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465
Oktarian, S., Defit, S., & Sumijan. (2020). Clustering students’ interest determination in school selection using the K-Means clustering algorithm method. Jurnal Informasi dan Teknologi, 2, 68–75. https://doi.org/10.37034/jidt.v2i3.65
Ramadhanti, R., & Hidayat, M. T. (2022). Strategi guru dalam mengatasi perilaku bullying siswa di sekolah dasar. Jurnal Basicedu, 6(3), 4566–4573. https://doi.org/10.31004/basicedu.v6i3.2892
Utami, T. W., Astuti, Y. S., & Livana, P. (2019). Hubungan kecemasan dan perilaku bullying anak sekolah. Jurnal Pendidikan Keperawatan Indonesia, 2(1), 1–6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saturnus : Jurnal Teknologi dan Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.