Penerapan Metode Clustering pada Status Gizi Ibu Hamil

(Studi Kasus: Puskesmas Kota Datar)

Authors

  • Hesty Vitara STMIK Kaputama
  • Rusmin Saragih STMIK Kaputama
  • Victor Maruli Pakpahan STMIK Kaputama

DOI:

https://doi.org/10.61132/saturnus.v2i4.321

Keywords:

Data Mining, Clustering, Nutrition of Pregnant Women

Abstract

Pregnancy is a process in a woman's life, where major changes occur in her physical, mental and social aspects. These changes cannot be separated from the factors that influence them, namely physical factors, psychological factors and environmental, social, cultural and economic factors. One of the nutritional problems of pregnant women is chronic energy deficiency (KEK). Chronic energy deficiency (KEK) is a nutritional problem caused by a lack of food intake over a long period of time, a matter of years. Datar City Health Center is one of the agencies that provides health services for the local community and helps resolve problems with the health and nutritional development of mothers and children to prevent problems with malnutrition in pregnant women. The aim of the research is to make it easier for agencies to manage data and obtain complete information about the nutritional status of pregnant women. From 20 data, 3 groups were obtained, Cluster 1 had 4 data on the nutritional status of pregnant women, Cluster 2 had 4 data on the nutritional status of pregnant women and Cluster 3 had 12 data on the nutritional status of pregnant women. And the largest group obtained was cluster 3 with the data group on the nutritional status of pregnant women found in the gestational age group (X), namely 14-27 weeks old, with screening results (Y) namely adequate nutrition, and the causal factors (Z) that occurred were economic factors

References

Adi Rahmat, C., Permatasari, H., Rasywir, E., & Pratama, Y. (2023). Penerapan K-Means Untuk Clustering Kondisi Gizi Balita Pada Posyandu. Jurnal Media Informatika Budidarma, 7(1), 207–213. https://doi.org/10.30865/mib.v7i1.5142

Anjelita, M., Windarto, A. P., Wanto, A., & Sudahri, I. (2020). Pengembangan Datamining Klastering Pada Status Pencemaran Lingkungan Hidup. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 1, 309–313.

Asy Aria, T., Julkarnain, M., & Hamdani, F. (2023). Penerapan Algoritma K-Means Clustering Untuk Data Obat. Media Online, 4(1), 649–657. https://doi.org/10.30865/klik.v4i1.1117

Dewi, ratna. (2023). Aplikasi Matlab untuk Simulasi Pengolahan Sinyal ( agus Prijono, Ed.; 1st ed.). Zahir Publishing.

Fajri, M. B., & Purnamasari, S. D. (2022). Klasterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Menggunakan K-Means Clustering. Journal of Information Technology Ampera, 3(3), 2774–2121. https://journal-computing.org/index.php/journal-ita/index

Kusrini, & Taufiq Luthfi, E. (2009). Algoritma Data Mining (T. Ari Prabawati, Ed.; 1st ed.). CV Andi Offset.

Lestari Br, A. P., Noveriyenni, & Saragih, R. (2022). Penerapan Metode K-Means Clustering Dalam Pengelompokan Status Kesehatan Ibu Hamil. Jurnal Informatika Kaputama (JIK), 6(3).

Otong Kadang, M. (2021). Algoritma dan Pemrograman (Abd. K. Muzakir, Ed.; Pertama). Humanities Genius.

Relita Buaton, Zarlis, M., Efendi, S., & Yasin, V. (2019). Data Mining Time Series (1st ed., Vol. 1). Wade Group.

Santoso, A., & Lianda, D. (2023). Penerapan Metode K-Medoids untuk Menentukan Status Gizi Balita di Puskesmas Dermayu. Jurnal Penelitian Rumpun Ilmu Teknik (JUPRIT), 2(4), 108–121. https://doi.org/10.55606/juprit.v2i4.3008

Wahyudi, M., Masitha, Risna Saragih, & Solikhun. (2020). Data Mining(2) (J. Simarmata, Ed.; 1st ed.). Yayasan Kita Menulis.

Yulizawati, Fitria, H., & Chairani, Y. (2021). Continuity Of Care (1st ed., Vol. 1). Indomedia Pustaka. www.indomediapustaka.com

Published

2024-08-07

How to Cite

Hesty Vitara, Rusmin Saragih, & Victor Maruli Pakpahan. (2024). Penerapan Metode Clustering pada Status Gizi Ibu Hamil : (Studi Kasus: Puskesmas Kota Datar). Saturnus : Jurnal Teknologi Dan Sistem Informasi, 2(4), 01–16. https://doi.org/10.61132/saturnus.v2i4.321

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.