Klasifikasi Jenis Buah Jeruk Menggunakan Metode Convolutional Neural Network: Deep Learning Studi

Authors

  • Yazid Fauzan Nur Ashfani Universitas Muhammadiyah Ponorogo
  • Yovi Litanianda Universitas Muhammadiyah Ponorogo
  • Rizqy Amalia Putri Telkom University

DOI:

https://doi.org/10.61132/uranus.v2i2.129

Keywords:

Citrus fruit classification, Convolutional Neural. Networks, image processing deep learning, automated system

Abstract

This study analyzes the use of deep learning, primarily Convolutional Neural Networks (CNN), to categorize various types of citrus fruits. The study attempts to create an automated system that can accurately categorize citrus fruit kinds using image processing techniques. The collection contains 40 photos of four different citrus fruit types: pomelo, mandarin orange, kaffir lime, and lime. The methodology entails gathering photos, preprocessing them to improve quality, and then training a CNN model to classify the fruit varieties. The results show a high accuracy rate of 95% in classifying fruit types, demonstrating that the CNN model is effective for this task. The findings indicate that increasing the dataset and including other fruit species could significantly boost the system's accuracy.

References

Ali, M. M., Raj, M., & Vatsa, D. (2023). FruizNet Using an Efficient Convolutional Neural Network. 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE).

Brahmanji, G., Hari Priya, G., Hari Priya, G., Dhana Lakshmi, C., & Satish, B. (2023). Fruit Disease Identification using Image Processing Techniques and Feature Extraction. International Journal of Advanced Research in Science, Communication and Technology, 34–39. https://doi.org/10.48175/ijarsct-9538

Dinata, M. I., Sulistianingsih, N., & Yusuf, S. A. A. (2023). Implementasi Deep Learning Dalam Klasifikasi Citra Gambar Dengan Menggunakan Metode CNN. Journal of Information Technology System, 14–19.

Gill, H. S., Murugesan, G., Mehbodniya, A., Sekhar Sajja, G., Gupta, G., & Bhatt, A. (2023). Fruit type classification using deep learning and feature fusion. Computers and Electronics in Agriculture, 211. https://doi.org/10.1016/j.compag.2023.107990

Laimek, P., Kongprawechnon, W., Phatrapornnant, T., & Isshiki, T. (2023). High-Value Fruit Biometric Identification via Triplet-Loss Technique. 2023 8th International Conference on Control and Robotics Engineering (ICCRE).

Sarangi, P. K., Sharma, B., Rani, L., & Dutta, M. (2024). Satellite Image Classification Using Convolutional Neural Network. Advances in Aerial Sensing and Imaging, May, 333–354. https://doi.org/10.1002/9781394175512.ch15

Sharma, N., Jain, V., & Mishra, A. (2018). An Analysis of Convolutional Neural Networks for Image Classification. Procedia Computer Science, 132(Iccids), 377–384. https://doi.org/10.1016/j.procs.2018.05.198

Yang, Y. (2023). Fruit Image Classification Using Convolution Neural Networks. Highlights in Science, Engineering and Technology, 34, 110–119. https://doi.org/10.54097/hset.v34i.5430

Published

2024-06-12

How to Cite

Yazid Fauzan Nur Ashfani, Yovi Litanianda, & Rizqy Amalia Putri. (2024). Klasifikasi Jenis Buah Jeruk Menggunakan Metode Convolutional Neural Network: Deep Learning Studi. Uranus : Jurnal Ilmiah Teknik Elektro, Sains Dan Informatika, 2(2), 70–79. https://doi.org/10.61132/uranus.v2i2.129

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.