Perbandingan Akurasi Model ResNet50 dan VGG16 dalam Mengklasifikasi Penyakit Cacar Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.61132/uranus.v3i1.679Keywords:
Artificial Intelligence, CNN, RESNET50, VGG16, AccuracyAbstract
Pox disease is an infectious disease that attacks the immune system. This disease is often considered mild because it is usually harmless and does not cause death. With the lack of counseling and treatment of this disease, lacks an understanding of pox disease, the types and the treatment . Some of the types of pox disease are Monkeypox, Chickenpox, and Cowpox. Cowpox can cause complications such as keratitis and corneal melting due to persistent erosion. To avoid complications of pox disease arising, CNN algorithm is considered capable of classifying the type of pox disease. Therefore, this study was conducted using 2 CNN methods used, namely: ResNet50 and VGG16. Because the distinguishing features of pox disease classification involve a mixture of color, shape and texture, CNN algorithm approaches including ResNet50 and VGG16 were tried. The ResNet50 model showed quite good results with an average accuracy of 76% but VGG16 had better accuracy with a value of 93%. The ResNet50 model showed good results with an average accuracy of 76% but VGG16 had better accuracy with a value of 93%. Using further evaluation, VGG16 has superior values with good precision, recall, and F1-score for each class. This proves that VGG16 is a superior model for classifying pox disease types. The ResNet50 model is good at identifying three classes, namely, Chickenpox, Cowpox, and Healthy compared to the Monkeypox class because that class has 25% recall value and 40% F1-score value. Similarly, the VGG16 model where the monkeypox class still has a recall value of 76%. This shows the potential of using artificial intelligence technology to classify smallpox disease.
References
Berliani, T., Rahardja, E., & Septiana, L. (2023). Perbandingan kemampuan klasifikasi citra X-ray paru-paru menggunakan transfer learning ResNet-50 dan VGG-16. Journal of Medicine and Health, 5(2), 123–135. https://doi.org/10.28932/jmh.v5i2.6116
Bruneau, R. C., Tazi, L., & Rothenburg, S. (2023). Cowpox viruses: A zoo full of viral diversity and lurking threats. Biomolecules, 13(2). https://doi.org/10.3390/biom13020325
Centers for Disease Control and Prevention (CDC). (2024). Chickenpox. https://www.cdc.gov/chickenpox/about/index.html
Ciptaningrum, A. (2021). Segmentasi lesi kulit pada citra dermoskopi menggunakan CNN [Master's thesis, Institut Teknologi Sepuluh Nopember].
Hasan, M. A., Riyanto, Y., & Riana, D. (2021). Grape leaf image disease classification using CNN-VGG16 model. Jurnal Teknologi dan Sistem Komputer, 9(4), 218–223. https://doi.org/10.14710/jtsiskom.2021.14013
Kencana, N. S. T., & Anindita, R. (2024). Seorang anak laki-laki usia 8 tahun dengan varicella zoster disertai infeksi sekunder. Proceeding of Thalamus 2024, 2(1).
Krankowska, D. C., Woźniak, P. A., Cybula, A., Izdebska, J., Suchacz, M., Samelska, K., Wiercińska-Drapało, A., & Szaflik, J. P. (2021). Cowpox: How dangerous could it be for humans? Case report. International Journal of Infectious Diseases, 104, 239–241. https://doi.org/10.1016/j.ijid.2020.12.061
Kuncoro, C. S. (2023). Monkeypox: Manifestasi dan diagnosis. Cermin Dunia Kedokteran, 50(1), 11–15. https://doi.org/10.55175/cdk.v50i1.333
Layn, S. R., Lestari, H., & Muchtar, F. (2023). Gambaran pengetahuan, sikap, dan tindakan pemandu wisata dalam upaya pencegahan cacar monyet (Monkeypox) di Desa Wisata Liya Togo. KOLONI: Jurnal Multidisiplin Ilmu, 2(3), 9–23.
Mpox Skin Lesion Dataset Version 2.0 (MSLD v2.0). (2023). Kaggle. https://www.kaggle.com/datasets/joydippaul/mpox-skin-lesion-dataset-version-20-msld-v20/data
Nawaz, Y., Nazar, I., Sattar, R. Z., Kaleem, M., Saleem, M., Iqbal, K., Shafiq, R., Nawaz, K., & Ahmad, H. (2022). A review on smallpox abstract pathology of smallpox. Journal of Biomedical Sciences. https://doi.org/10.36648/2254-609X.11.6.65
Pattimura, Y. B., Kanoena, M. P., Hartanto, A. D., Hartatik, H., & Kusnawi, K. (2023). Implementasi algoritma Naïve Bayes dalam mengidentifikasi jenis penyakit cacar dengan image processing. Intechno Journal (Information Technology Journal), 5(1). https://doi.org/10.24076/intechnojournal.2023v5i1.1571
Ria, S. N., Walid, M., & Umam, B. A. (2022). Jurnal Energy, 12(2), 57–64.
Supirman, S., Lubis, C., Yuliarto, D., & Perdana, N. J. (2023). Klasifikasi penyakit kulit menggunakan convolutional neural network (CNN) dengan arsitektur VGG16. Simtek: Jurnal Sistem Informasi dan Teknik Komputer, 8(1), 135–140. https://doi.org/10.51876/simtek.v8i1.217
Wang, A., Li, D., Shen, W., & Zhang, X. (2023). Monkeypox cases prediction with machine learning. Highlights in Science, Engineering and Technology, 39, 246–257. https://doi.org/10.54097/hset.v39i.6536
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Uranus : Jurnal Ilmiah Teknik Elektro, Sains dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.