Perbandingan Algoritma Deep Q-Network dan Local Outlier Factor Untuk Deteksi Anomali Konsumsi Air Minum Pelanggan PUDAM Kabupaten Banyuwangi
DOI:
https://doi.org/10.61132/mars.v2i4.243Keywords:
Non-Revenue Water, Anomali, Deep Q-Network, Local Outlier Factor, IQRAbstract
Adequate provision of drinking water in quantity, quality, and continuity is needed to realize a healthy and productive society. A well-managed Drinking Water Supply System (SPAM) is essential to meet this need. Based on Government Regulation Number 122 of 2015, the implementation of SPAM involves the development and management of drinking water which is the responsibility of the local government and PUDAM as the implementer. The main challenges faced by PUDAM include the high level of water loss or Non-Revenue Water (NRW), which reaches 40% in Indonesia. One of the efforts to reduce the NRW level at PUDAM Banyuwangi Regency in the Kalipuro District area is to detect abnormal consumption in customer drinking water consumption. This study uses the Deep Q Network and Local Outlier Factor algorithms to detect anomalies in drinking water consumption, with the aim of comparing the performance of the two algorithms in identifying abnormal consumption patterns at PUDAM Banyuwangi Regency. The results of the study indicate that the Local Outlier Factor algorithm is more suitable for anomaly detection as evidenced by the absence of detection errors and an F1-Score value of 36%.
References
Asian Development Bank. (2023). Buku Pegangan tentang Air Tak Berekening (NRW) untuk Manajer. Diakses dari Asian Development Bank.
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 93–104. https://doi.org/10.1145/342009.335388
Dang, X.-H., Micenková, B., Assent, I., & Ng, R. (2013). Local Outlier Detection with Interpretation. https://doi.org/10.1007/978-3-642-40994-3_20
Infrastructure Asia. (2024). 3 Steps to the Sustainable Reduction of Non-Revenue Water in Indonesia. Diakses dari Infrastructure Asia.
JDIH Kementerian PUPR. (2021). Buku Kinerja BUMD Air Minum Tahun 2021. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat.
Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR). (2021). Buku Kinerja BUMD Air Minum Tahun 2021. Jakarta: Kementerian PUPR.
Nugroho, K. (2016). Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Jurnal Ilmiah Infokam, 12(1).
Pasha, Y. (2022). Tingkat Kebocoran Air Minum PDAM di Indonesia Capai 40 Persen. IDN Times. Diakses dari IDN Times.
Purba, R., Lestari, W. S., & Ulina, M. (2022). Deteksi Serangan DDoS Menggunakan Deep Q-Network. Teknik Informatika Dan Sistem Informasi.
Republik Indonesia. (2015). Peraturan Pemerintah Nomor 122 Tahun 2015 tentang Sistem Penyediaan Air Minum. Jakarta: Sekretariat Negara.
SHANTY, D., & S DJ, R. (2020). Ketercapaian Sasaran 4K dalam Pelaksanaan Rencana Pengamanan Air Minum (RPAM) di PDAM Tirta Dharma Kota Malang. Jurnal Reka Lingkungan, 8(2), 112–120. https://doi.org/10.26760/rekalingkungan.v8i2.112-120
Situmorang, S., & Yahfizham, Y. (2023). Analisis Kinerja Algoritma Machine Learning Dalam Deteksi Anomali Jaringan. Konstanta: Jurnal Matematika Dan Ilmu Pengetahuan Alam, 1(4), 258–269.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning, second edition: An Introduction. MIT Press. https://books.google.co.id/books?id=sWV0DwAAQBAJ
Wanginusantara. (2023). PUDAM Banyuwangi Jadi Peserta Terbaik Indikator Kualitas Air Program Hibah Air Minum Berbasis Kinerja. Diakses dari Wanginusantara.
Yu, M., & Sun, S. (2020). Policy-based reinforcement learning for time series anomaly detection. Engineering Applications of Artificial Intelligence, 95, 103919. https://doi.org/10.1016/j.engappai.2020.103919
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.