Penerapan K-Means Clustering untuk Menentukan Lokasi Promosi Penerimaan Mahasiswa Baru
(Studi Kasus: STMIK Kaputama Kota Binjai)
DOI:
https://doi.org/10.61132/merkurius.v2i5.322Keywords:
Data Mining, Clustering, K-means Algorithm, PromotionAbstract
The process of accepting new students generates a lot of data in the form of profiles of students who register. From year to year there is an increase in the number of prospective new students who come from several areas in Binjai City, Langkat Regency and surrounding areas, so the location of the socialization of new student admissions promotions every year is increasing and wider. And from several schools that have been visited and are expected to provide new prospective students, in fact, it is not proportional to the final number of prospective students who register. In this study, applying the K-Means Clustering algorithm using 3 variables namely, region, school origin, major. In determining the location of new student admissions promotions, the promotion team first identifies what factors will influence the determination of promotional locations ranging from region, school origin and majors that are considered to be set as promotional locations. Based on the results of grouping new student admission data of STMIK Kaputama Binjai using the K-means Clustering method from 20 data that has been processed, 3 clusters and 3 iterations are produced where cluster 1 has 9 data, cluster 2 has 2 data and cluster 3 has 9 data.
References
Azmi, N., Helmiah, F., & Sudarmin, S. (2022). Implementasi metode K-Means sebagai upaya penentuan lokasi promosi penerimaan siswa baru. Building of Informatics, Technology and Science (BITS), 3(4), 649–660.
Buulolo, E. (2020). Data mining: Untuk perguruan tinggi. Deepublish Publiser.
Garaika, G., & Feriyan, W. (2019). Promosi dan pengaruhnya terhadap animo calon mahasiswa baru dalam memilih perguruan tinggi swasta. Jurnal Aktual, 16(1), 21–30.
Lestari, W. (2019). Clustering data mahasiswa menggunakan algoritma K-Means untuk menunjang strategi promosi (Studi kasus: STMIK Bina Bangsa Kendari). Jurnal Sistem Informasi dan Sistem Komputer, 4(2), 35–48.
Mirantika, N., Tsamratul’ain, A., & Diviana Agnia, F. (2021). Penerapan algoritma K-Means clustering untuk pengelompokan penyebaran COVID-19 di Provinsi Jawa Barat. Jurnal Ilmu Komputer, 15. https://journal.uniku.ac.id/index.php/ilkom
Reza, A., Serasi Ginting, B., & Fauzi, A. (2022). Penerapan metode clustering untuk pengelompokan data peserta didik baru (PPDB) di SMP Swasta Gotong Royong Kuala. Jurnal Sistem Informasi Kaputama (JSIK), 6(2), 45–55.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.