Analisa Komparasi Algoritma Machine Learning dan Deep Learning Dalam Klasifikasi Citra Ras Kucing

Authors

  • Royan Fajar Sultoni UPN "Veteran" Jawa Timur
  • Achmad Junaidi UPN "Veteran" Jawa Timur
  • Eva Yulia Puspaningrum UPN "Veteran" Jawa Timur

DOI:

https://doi.org/10.61132/neptunus.v2i3.251

Keywords:

Algorithm Comparison, Machine Learning, Deep Learning, SVM, KNN, CNN

Abstract

Cats (Felis catus) are a type of carnivorous mammal from the Felidae family that was domesticated and has been one of the animals that has mingled with humans since time immemorial. Domestic cats are broadly divided into 2 types, namely village cats and purebred cats. Purebred cats have quite a varied number of types. Therefore, confusion often occurs in determining the type or breed of cat. Meanwhile, in practice, each race does not have the same treatment (especially in the aspect of care). In digital image processing, Machine Learning and Deep Learning are the main aspects in the process of applying technology that can overcome this problem, so research related to this problem was designed. This research was conducted to add insight for further research in a more sophisticated and effective image recognition process. In the experiments carried out in this research, the SVM, KNN, and CNN methods were tested with the Xception and EfficientNet-B1 architectures. Based on the final results obtained from this test, the CNN method with the Xception architecture is the best model. By using fine-tuning and a learning-rate of 1e-5, this method produces a micro average value of 0.974, on a cat breed image dataset of 13 classes and 7800 images. Meanwhile, the method that produces the fastest ETA Training and Testing is obtained by the KNN method, with an ETA Training time of 0.194 seconds, and an ETA Testing time of 1.782 seconds.

 

 

 

References

Azahro Choirunisa, N., Karlita, T., & Asmara, R. (2021). Deteksi Ras Kucing Menggunakan Compound Model Scaling Convolutional Neural Network. Technomedia Journal, 6(2), 236–251. https://doi.org/10.33050/tmj.v6i2.1704

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1251–1258.

Danendra, F. A., Anggraeny, F. T., & Maulana, H. (2023). Klasifikasi Citra Penyakit Daun Cabai Rawit Dengan Menggunakan CNN Arsitektur AlexNet dan SqueezeNet. Jurnal Informatika, 12(01), 50–61.

Kusuma, J., Jinan, A., Zulkarnain Lubis, M., & Rosnelly, R. (2022). Komparasi Algoritma Support Vector Machine Dan Naive Bayes Pada Klasifikasi Ras Kucing. Generic, 14(1), 8–12.

Naufal, M. F., & Kusuma, S. F. (2023). ANALISIS PERBANDINGAN ALGORITMA MACHINE LEARNING DAN DEEP LEARNING UNTUK KLASIFIKASI CITRA SISTEM ISYARAT BAHASA INDONESIA (SIBI). Jurnal Teknologi Informasi Dan Ilmu Komputer , 10(4), 873–882. https://doi.org/10.25126/jtiik.2023106828

Prasath, V. B. S., Alfeilat, H. A. A., Hassanat, A. B. A., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., & Salman, H. S. E. (2017). Distance and Similarity Measures Effect on the Performance of K-Nearest Neighbor Classifier -- A Review. https://doi.org/10.1089/big.2018.0175

Solihin, F., Syarief, M., Rochman, E. M. S., & Rachmad, A. (2023). Comparison of Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Stochastic Gradient Descent (SGD) for Classifying Corn Leaf Disease based on Histogram of Oriented Gradients (HOG) Feature Extraction. Elinvo (Electronics, Informatics, and Vocational Education), 8(1), 121–129. https://doi.org/10.21831/elinvo.v8i1.55759

Suwarno, S., & Mahastama, A. W. (2023). ESTIMASI GENDER BERBASIS SIDIK JARI DENGAN WAVELET DAN SUPPORT VECTOR MACHINES. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(7), 1431–1436. https://doi.org/10.25126/jtiik.2023107972

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, PMLR, 6105–6114. http://arxiv.org/abs/1905.11946

Tarakci, F., & Ozkan, A. (2021). Comparison of classification performance of kNN and WKNN algorithms. Selcuk University Journal of Engineering Sciences, 20(02), 32–37. http://sujes.selcuk.edu.tr/sujes

Tarisa Akbar, A., Yudistira, N., & Ridok, A. (2023). IDENTIFIKASI GAGAL GINJAL KRONIS DENGAN MENGIMPLEMENTASIKAN METODE SUPPORT VECTOR MACHINE BESERTA K-NEAREST NEIGHBOUR (SVM-KNN). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(2), 301–308. https://doi.org/10.25126/jtiik.2023106059

Wijaya, E. (2023). KLASIFIKASI JENIS IKAN CUPANG MENGGUNAKAN METODE GLCM DAN SVM. UPN Veteran Jawa Timur.

Yaqub, M., Jinchao, F., Zia, M. S., Arshid, K., Jia, K., Rehman, Z. U., & Mehmood, A. (2020). State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sciences, 10(7), 1–19. https://doi.org/10.3390/brainsci10070427

Published

2024-07-19

How to Cite

Royan Fajar Sultoni, Achmad Junaidi, & Eva Yulia Puspaningrum. (2024). Analisa Komparasi Algoritma Machine Learning dan Deep Learning Dalam Klasifikasi Citra Ras Kucing. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 2(3), 328–357. https://doi.org/10.61132/neptunus.v2i3.251

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.