Identifikasi Penyakit Tanaman Citra Daun Cabe Menggunakan Gray Level Co-Occurrencce Matrix Dan Support Vector Machine
DOI:
https://doi.org/10.61132/neptunus.v2i2.86Keywords:
GLCM, SVM, Chili Leaf Image, Feature ExtractionAbstract
Disease control of chili leaf citra plants is an important aspect in modern agriculture to increase crop yields and reduce losses due to pest attacks on chili leaf citra plants. In this research, identification of chili leaf diseases uses Gray Level Co-Occurrence to obtain image features, and the Support Vector Machine (SVM) method is used to classify the feature extraction results according to leaf disease categories in the test image. Based on the disease class using the test image. .As a classification tool for identifying plant pests in images of chili leaves, the dataset used in this research consists of images of leaves that represent normal conditions and conditions attacked by pests. The pest identification process consists of several stages, including image pre-processing, feature extraction, as well as training and testing. SVM model.
References
F.F Tampinongkol,Y Herdiyeni,E.N.Herliyana, Feature Extraction Of Jabon (Anthocepalus sp) leaf disease using discreate wafelet transform, Jurnal TEKOMONIKA, Vol.18,no.2,pp 740-750,April 2020
Felliks Feiters Tampinongkol,Cevi Herdian,Hasan Basri,Lunardi Halim. (2023).Identifkasi Penyakit Daun Tomat Menggunakan Gray Level Co-occurrencce Matrix (GLCM) dan Support vector Machine (SVM).Jurnal Ilmu Komputer dan Teknologi Informasi Vol.8 No : 1. [6-10]
Gonzalez, R.C., Wood, R.E., 2004, Digital Image Processing Second Edition, Prentice Hall, New Jersey.
Gunjan Mukherjee, Arpitam Chatterjee, and Bipan Tudu, "Study on the potential of combined GLCM features towards medicinal plant classification," in 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, 2016.
Jundullah,A.(2016).Analisis dan Implementasi Deteksi Citra Spam Menggunakan Gray Level Co-Occururences Matrix dan Naïve Bayes Skripsi : Universitas Telkom
Krishna Chaitanya Tatikonda, Chandra Mohan Bhuma, and Srinivas Kumar Samayamantula, "The Analysis of Digital Mammograms Using HOG and GLCM Features," in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bangalore, India, 2018.
Nisa’ul Hafidoh. (2022). Identifikasi Penyakit Daun Tanaman Cabai Merah Dengan Ekstraksi Fitur Dan Klasifikasi Support Vector Machine. Journal Hasil Penelitian dan Pengabdian. Vol.5.1. [11-13]
Rakesh Asery, Ramesh Kumar Sunkaria, Lakhan Dev Sharma, and Aman Kumar, "Fog detection using GLCM based features and SVM," in 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 2016.
Ritonga,A, S dan Purwaningsi, E. S. (2018). Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Kualitas Pengelasan SMAW (Shield Metal Arc Welding). Jurnal Ilmiah Edutic Vol.5, No.1, november-2018[1-5]
Rizal Fikri, Fitri Arnia, and Rusdha Muharar, "Pengenalan Karakter Tulisan Tangan Jawi Menggunakan Metode New Relative Context dan SVM," Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 5, no. 3, pp. 233-238, 2016
Rizaty, M. A. (2022, Juli 19). Produksi Cabai Rawit di Indonesia Turun 8,09% pada 2021 (Webpage). Retrieved from DataIndonesia.id : https://dataindonesia.id/sektor-riil/detail/produksi-cabai-rawit-di indonesia-turun-809-pada-2021 [14-20]
Wibowo, A. P. W. (2017). Penerapan Teknik Computer Vision Pada Bidang Fitopatologi Untuk Diteksi Penyakit dan Hama Tanaman Cabai. Jurnal Pengembangan IT Vol 2, No 2, 102-108.
Wijaya E.H., Hidayat N., Suprapto. (2018). Diagnosis penyakit cabai dengan menggunakan metode Forward Chaining – Demphster Shafer. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol 2(12): 7202-7208.
Z. A. A. Feri Agustina, “Identifikasi Citra Daging Ayam Kampung dan Broiler Menggunakan Metode GLCM dan Klasifikasi-NN,” J. Infokam, vol. XVI, no. 1, pp. 25–36, 2020
Z. Abidin, Y. Fredyatama, P. Teknik Informasi, S. K. Tinggi Teknik Pati Jl Raya Pati-Trangkil, and P. Jawa Tengah, “Klasifikasi Daun Empon-Empo Menggunakan Metode Gray Level Co-Occurrence Matrix Dan Algoritma K-Nn,” J. Sains, Teknol. dan Ind., vol. 18, no. 02, pp. 261–2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.