Penerapan Algoritma Apriori Dalam Analisis Keranjang Belanja Retail Di Wilayah Jawa Barat
DOI:
https://doi.org/10.61132/saturnus.v2i3.208Keywords:
Data Mining, Retail, West JavaAbstract
Market basket analysis is an important technique in data mining used to understand consumer purchasing patterns. This research uses the Apriori algorithm to identify relationships between products in the shopping basket, aiming to improve sales and marketing strategies in the retail industry. The focus of this study is on retail transaction data from West Java Province, which has a large and diverse population, reflecting complex consumer purchasing patterns. The research identifies several key issues: limited understanding of consumer behavior, unoptimized business strategy opportunities, and challenges in managing large transaction data. As a solution, the application of the Apriori algorithm can help find frequent consumer purchasing patterns and design more effective marketing strategies. The results show that market basket analysis using the Apriori algorithm is effective in understanding consumer purchasing patterns in the retail industry. This algorithm allows companies to discover itemsets that frequently appear together in transactions, which can be used to design more effective marketing and sales strategies.
References
Chaudekar, S. (2022). An Overview of Python for Data Analytics. International Research Journal of Engineering and Technology (IRJET), 461–468.
Hakim, A.R. (2023). Analisis Pola Pembelian Konsumen di Alfamart dengan Menggunakan Algoritma Apriori. Jurnal Desain Dan Analisis Teknologi, 193–199. http://journal.aptikomkepri.org/index.php/JDDAT/article/view/38%0Ahttp://journal.aptikomkepri.org/index.php/JDDAT/article/download/38/28
Harist, N.A., Munthe, I.R., & Juledi, A.P. (2021). Perancangan perangkat lunak bantu sistem penjualan berbasis aplikasi dekstop pada cafe instamie pangandaran. Jurnal Teknik Informatika UNIKA Santo Thomas, 06, 188–197.
Hutahaean, L., et al. (2020). Implementasi algoritma apriori pada sistem persediaan barang. JIKO (Jurnal Informatika Dan Komputer), 3(3), 173–180. https://doi.org/10.33387/jiko.v3i3.2192
Junaidi, A., Rahman, A., & Yunita, Y. (2021). Prediksi Persediaan Bahan Baku untuk Produksi Percetakan Menggunakan Metode Asosiasi. Paradigma - Jurnal Komputer Dan Informatika, 23(1), 25–31. https://doi.org/10.31294/p.v23i1.9597
Miranda, S.A., Fahrullah, F., & Kurniawan, D. (2022). Implementasi Association Rule Dalam Menganalisis Data Penjualan Sheshop dengan Menggunakan Algoritma Apriori. Metik Jurnal, 6(1), 30–36. https://doi.org/10.47002/metik.v6i1.342
Nofitri, R., & Irawati, N. (2019). Integrasi Metode Neive Bayes Dan Software Rapidminer Dalam Analisis Hasil Usaha Perusahaan Dagang. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 6(1), 35–42. https://doi.org/10.33330/jurteksi.v6i1.393
Prasetya, T., et al. (2022). Analisis Data Transaksi Terhadap Pola Pembelian Konsumen Menggunakan Metode Algoritma Apriori. INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, 6(1), 43. https://doi.org/10.51211/itbi.v6i1.1688
Qoniah, I., & Priandika, A. T. (2020). Analisis Market Basket Untuk Menentukan Asossiasi Rule Dengan Algoritma Apriori (Studi Kasus: Tb.Menara). Jurnal Teknologi Dan Sistem Informasi, 1(2), 26–33. https://doi.org/10.33365/jtsi.v1i2.368
Romdon, D., & Kholil, I. (2022). Implementasi Data Mining dengan Metode Apriori Dalam Menentukan Pola Pemilihan Pemeriksaan Kimia. TIN: Terapan Informatika Nusantara, 2(10), 642–651. https://doi.org/10.47065/tin.v2i10.1349
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saturnus : Jurnal Teknologi dan Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.