Optimasi Penyusunan Koleksi Buku Dinas Perpustakaan Berdasarkan Pola Peminjaman dengan Metode Apriori

(Studi Kasus: Dinas Perpustakaan)

Authors

  • Dinda Firdawati Simamora STMIK Kaputama
  • Rusmin Saragih STMIK Kaputama
  • I Gusti Prahmana STMIK Kaputama

DOI:

https://doi.org/10.61132/saturnus.v2i4.360

Keywords:

Library, Data Mining, Apriori and Association Rule

Abstract

A library is a facility or place that provides reading materials. Good book arrangement can help the library in obtaining good reading sources. The arrangement of library service book collections based on borrowing patterns, there is an alignment between user needs and the availability of reading materials available in the library. Analysis of book borrowing patterns provides valuable insights for library staff in determining the books that are most in demand and often needed by users. Data mining is defined as mining data or efforts to dig up valuable and useful information in a very large database. The most important thing in data mining techniques is the rule for finding high frequency patterns between sets of itemsets called Association Rules. The method used in this study is Apriori (Association Rule). This technique is used to find relationships or associations between items or variables in data. Well-known algorithms such as Apriori and Eclat are used to find association rules in transactional data. The purpose of this study is to find out library visitor data using the Apriori Algorithm method and to find out the application of data mining for compiling book collections based on borrowing patterns. The results of this study are the multiplication of support and confidence, choose the one with the largest multiplication result. The largest result of the multiplication of these multiplications is the rule used when borrowing books. Because the results of the multiplication of the 4 borrowings have the same value, all of them can be used as rules.

 

References

Ahmad Nurcholis. (2018). Membangun database arsip persuratan menggunakan pemrograman PHP dan MySQL. CV. Jejak Publisher.

Arta, I. K. J., Indrawan, G., & Dantes, G. R. (2017). Data mining rekomendasi calon mahasiswa berprestasi di STMIK Denpasar menggunakan metode technique for others reference by similarity to ideal solution. JST (Jurnal Sains dan Teknologi), 5(2).

Dessi Eka Sastie. (2020). Analisa algoritma apriori pada pola peminjaman buku di Perpustakaan ITB Ahmad Dahlan. Jurnal Sistem Informasi, STMIK Nusa Mandiri, Jakarta, Indonesia.

Fauzia Safitrie Sasonoputri. (2022). Penerapan algoritma apriori untuk menemukan pola peminjaman buku di perpustakaan. Jurnal Sistem Informasi, STT Ronggolawe Cepu.

Lamhot Sitorus. (2015). Algoritma dan pemrograman. Andi Offset.

Missy Tsara Permatasari. (2019). Penerapan algoritma apriori untuk mengetahui pola penempatan buku dan rekomendasi persediaan buku di perpustakaan daerah Kota Salatiga. Jurnal Teknik Informatika, Universitas Kristen Satya Wacana Salatiga.

Muhammad Arhami, & Muhammad Natsir. (2020). Data mining algoritma dan implementasi. CV. Andi Offset.

Prasetyowati, E. (2017). Data mining pengelompokan data untuk informasi dan evaluasi. Duta Media Publishing.

Pulut Suryati. (2020). Analisis pola peminjaman buku dengan menggunakan algoritma apriori. Jurnal Informatika dan Komputer, STMIK Akakom Yogyakarta.

Rosa, A. S., & Shalahuddin, M. (2018). Rekayasa perangkat lunak terstruktur dan berorientasi objek. Informatika.

Werdiningsih, I., Nuqoba, B., & Muhammadun. (2020). Data mining menggunakan Android, Weka, dan SPSS (p. 209). Airlangga University Press.

Yuli Mardi. (2017). Data mining klasifikasi menggunakan algoritma C4.5. Jurnal APIKES Iris Padang.

Published

2024-08-30

How to Cite

Dinda Firdawati Simamora, Rusmin Saragih, & I Gusti Prahmana. (2024). Optimasi Penyusunan Koleksi Buku Dinas Perpustakaan Berdasarkan Pola Peminjaman dengan Metode Apriori : (Studi Kasus: Dinas Perpustakaan). Saturnus : Jurnal Teknologi Dan Sistem Informasi, 2(4), 277–286. https://doi.org/10.61132/saturnus.v2i4.360

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.