Diagnosa Penyakit Paru-Paru dengan Metode Naive Bayes

(Studi Kasus: RSUD Djoelham Kota Binjai)

Authors

  • Boyke Gunawan Manurung STMIK Kaputama
  • Akim Manaor Hara Pardede STMIK Kaputama
  • Rusmin Saragih STMIK Kaputama

DOI:

https://doi.org/10.61132/saturnus.v2i4.359

Keywords:

Lungs, Expert System, Naïve Bayes

Abstract

The lungs as the only pump for the respiratory system are very important organs for the continuation of life. Diagnosing or checking lung symptoms early can help people recognize the possibility that they are suffering from lung disease, so that treatment or care can be done earlier to prevent the severity of the disease. The method used in this study is the Naïve Bayes method. Naive Bayes is a simple probabilistic classifier that calculates a set of probabilities by adding up the frequencies and combinations of values ​​from the given dataset. An expert system is a computer application that can help decision making in more specific fields with methods that have been analyzed in advance by experts or specialists. This study used variables, namely types of lung disease including Pulmonary Tuberculosis (TB), Chronic Obstructive Pulmonary Disease (COPD), Bronchial Asthma and Lung Cancer. The results of this study are that lung disease or types of lungs can be diagnosed using the web-based Naïve Bayes method, and make it easier for sufferers to consult without seeing a doctor by selecting symptoms of lung disease.

References

A. S., Rosa dan Shalahuddin, M. (2018), Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek, Bandung: Informatika.

Ahmad Buchori, Siti Khodijah dan Ade Syahrul Ramdan, (2023), Sistem Pakar Diagnosa Penyakit Paru-Paru Menggunakan Metode Naïve Bayes Classifier Berbasis Java, Jurnal: Teknik Informatika, Universitas Indra Prasta PGRI Jakarta Timur

Ahmad Nurcholis, (2018), Membangun Database Arsip Persuratan Menggunakan Pemrograman PHP dan MySQL, CV. Jejak Publisher, Jawa Barat

Alex Wenda, (2023), Sistem Pakar Untuk Mendiagnosa Penyakit Paru-Paru Dengan Menggunakan Metode Teorema Bayes, Jurnal: Teknik Electro, Universitas Islam Negeri Sultan Syrif Kasim Riau

Amegia Saputra, R., Ruslan Taufik, A., Saumi Ramdhani, L., Oktapiani, R., & Marsusanti, E. (2018). Sistem Pendukung Keputusan Dalam Menentukan Metode Kontrasepsi Menggunakan Algoritma Naive Bayes. In Seminar Nasional Inovasi dan Tren (SNIT).

Arganda Meranda, (2020), Perancangan Deteksi Suara Paru-Paru Berbasis DSP TMS320C6416T dan Module Wireless, Jurnal: Teknik Electro, Politeknik Negeri Sriwijaya Palembang

Budiharto, W., & Suhartono, D. (2016). Artificial intelligence Konsep dan Penerapannya. Yokyakarta, Andi Ofset

D. Kurniawan, (2020), Pengertian XAMPP Lengkap dengan Cara Menggunakannya (Terbaru),” Niagahoster.Co.Id

Eva Wulandari dan Andreas Perdana, (2022), Klasifikasi Kanker Paru-Paru Menggunakan Metode Naïve Bayes, Jurnal: Teknik Informatika, STMIK Dharma Wacana Metro

Hayadi, B. Herawan, (2018), Sistem Pakar, Yogyakarta, Deepublish

Ibnu Tito Dessetiadi, Ade Pujianto dan M. Gustafianto, (2016), Sistem Pakar Untuk Mendiagnosa Penyakit Paru-Paru Manggunakan Algoritma Naïve Bayes, Jurnal: Teknik Informatika, STMIK Amiko Yogyakarta

Karman, Joni & Arifin, Ahmad Zainul, (2018), Aplikasi Delivery Order Berbasis Web Mobile pada Trotoar Steak, Jurnal TIPS, Vol. 9, No. 2, h.37- 43.ISSN-P: 2407-2192.

Muhammad Iqbal Yunan Helmi, (2021), Diagnosa Penderita Penyakit Kanker Paru Menggunakan Support Vactor Machine dan Naïve Bayes, Jurnal: Matematika, Universitas Jember Indonesia

Published

2024-08-30

How to Cite

Boyke Gunawan Manurung, Akim Manaor Hara Pardede, & Rusmin Saragih. (2024). Diagnosa Penyakit Paru-Paru dengan Metode Naive Bayes : (Studi Kasus: RSUD Djoelham Kota Binjai). Saturnus : Jurnal Teknologi Dan Sistem Informasi, 2(4), 268–276. https://doi.org/10.61132/saturnus.v2i4.359

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.