Analisis Sentimen Aplikasi Liputan6.Com pada Ulasan Pengguna di Google Playstore dengan Menggunakan Algoritma Support Vector Machine (Svm) dan Naïve Bayes
DOI:
https://doi.org/10.61132/saturnus.v3i3.867Keywords:
Sentiment Analysis, Google Play Store, Support Vector Machine, Naïve Bayes, TF-IDF, Application Review, Web ScrapingAbstract
This study aims to evaluate user sentiment toward the Liputan6.com application available on the Google Play Store. In the digital era, user reviews serve as a significant indicator in assessing the quality of an application. However, the inconsistency between rating scores and review content renders manual analysis less objective. To address this issue, a machine learning approach was adopted by comparing two algorithms, namely Support Vector Machine (SVM) and Naïve Bayes (NB). A total of 2,500 reviews were collected through a web scraping process and automatically labeled based on the rating (positive if ≥ 3, negative if < 3). The data preprocessing stages included cleaning, case folding, tokenizing, stopword removal, and token filtering. Subsequently, word weighting was carried out using the TF-IDF method, followed by classification using 10-Fold Cross Validation in RapidMiner. The evaluation results indicate that, in the positive class, NB demonstrated superior precision (89.47%), whereas SVM achieved higher recall (98.94%) and F1-score (90.96%). In the negative class, SVM performed better in terms of precision (66.15%), while NB attained higher recall (65.65%) and F1-score (36.34%). Further evaluation based on AUC and accuracy positioned SVM in the good category (AUC 0.842; accuracy 83.82%), while NB was categorized as fail (AUC 0.505; accuracy 60.87%). Overall, SVM is considered to be more effective than NB.
References
Anwar, M. S., Subroto, I. M. I., & Mulyono, S. (2019). Sistem pencarian e-journal menggunakan metode stopword removal dan stemming berbasis Android. Konferensi Ilmiah Mahasiswa Unissula, 2, 58–70.
Audiansyah, D. D., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis sentimen aplikasi MyXL menggunakan metode Support Vector Machine berdasarkan ulasan pengguna di Google Play Store. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(8), 3987–3994. http://j-ptiik.ub.ac.id
Darmawan, G., Alam, S., & Sulistyo, M. I. (2023). Analisis sentimen berdasarkan ulasan pengguna aplikasi MyPertamina pada Google Playstore menggunakan metode Naïve Bayes. STORAGE – Jurnal Ilmiah Teknologi dan Ilmu Komputer, 2(3), 100–108.
Gifari, O. I., Adha, M., Freddy, F., & Durrand, F. F. S. (2022). Film review sentiment analysis using TF-IDF and Support Vector Machine. Journal of Information Technology, 2(1), 36–40.
Kusnia, U., Kurniawan, F., & Artikel, S. (2022). Analisis sentimen review aplikasi media berita online pada Google Play menggunakan metode algoritma Support Vector Machines (SVM) dan Naive Bayes. Jurnal Keilmuan dan Aplikasi Teknik Informatika, 14(1), 24–25. https://doi.org/10.35891/explorit
Ma’rifah, H., Wibawa, A. P., & Akbar, M. I. (2020). Klasifikasi artikel ilmiah dengan berbagai skenario preprocessing. Sains, Aplikasi Komputasi dan Teknologi Informasi, 2(2), 70. https://doi.org/10.30872/jsakti.v2i2.2681
Nahm, F. S. (2022). Receiver operating characteristic curve: Overview and practical use for clinicians. Korean Journal of Anesthesiology, 75(1), 25–36. https://doi.org/10.4097/kja.21209
Nurian, A. (2023). Analisis sentimen ulasan pengguna aplikasi Google Play menggunakan Naïve Bayes. Jurnal Informatika dan Teknik Elektro Terapan, 11(3s1), 829–835. https://doi.org/10.23960/jitet.v11i3s1.3348
Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan algoritma K-Nearest Neighbor menggunakan wrapper sebagai preprocessing untuk penentuan keterangan berat badan manusia. MALCOM – Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085
Ridwansyah, T. (2022). Implementasi text mining terhadap analisis sentimen masyarakat dunia di Twitter terhadap kota Medan menggunakan K-Fold Cross Validation dan Naïve Bayes Classifier. KLIK – Kajian Ilmiah Informatika dan Komputer, 2(5), 178–185. https://doi.org/10.30865/klik.v2i5.362
Romadoni, F., Umaidah, Y., & Sari, B. N. (2020). Text mining untuk analisis sentimen pelanggan terhadap layanan uang elektronik menggunakan algoritma Support Vector Machine. Jurnal Sisfokom (Sistem Informasi dan Komputer), 9(2), 247–253. https://doi.org/10.32736/sisfokom.v9i2.903
Siti Aisah, I., Irawan, B., & Suprapti, T. (2024). Algoritma Support Vector Machine (SVM) untuk analisis sentimen ulasan aplikasi Al Qur’an digital. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3759–3765. https://doi.org/10.36040/jati.v7i6.8263
Suryawati, I., & Alam, S. (2022). Transformasi media cetak ke platform digital (Analisis mediamorfosis Harian SOLOPOS). Jurnal Signal, 10(2), 190. https://doi.org/10.33603/signal.v10i2.7240
Valerian, F. R., et al. (2025). Klasifikasi tingkat obesitas menggunakan metode GBM dan confusion matrix. Jurnal, 9(2), 2242–2249.
Wardhani, D., Astuti, R., & Saputra, D. D. (2024). Optimasi feature selection text mining: Stemming dan stopword. Innovation: Journal of Social Science Research, 4, 7537–7548.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Saturnus : Jurnal Teknologi dan Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.