Pengelompokan Tindak Kejahatan Berdasarkan Tempat Kejadian Perkara di Kota Binjai Menggunakan Metode Clustering

Studi kasus: Polres Binjai

Authors

  • Herdina Putri Ahmadi Sekolah Tinggi Manajemen Informatika dan Komputer Kaputama
  • Magdalena Simanjuntak Sekolah Tinggi Manajemen Informatika dan Komputer Kaputama
  • Muammar Khadapi Sekolah Tinggi Manajemen Informatika dan Komputer Kaputama

DOI:

https://doi.org/10.61132/saturnus.v3i3.933

Keywords:

Crime, CRISP-DM, K-Means Clustering

Abstract

Crime is a social issue that continues to evolve alongside increasing community activity and regional development. This study aims to Cluster crime data in Binjai City based on the location of incidents using the K-Means algorithm and the Cross Industry Standard Process for Data Mining (CRISP-DM) approach. The data were obtained from the Binjai Police Department, with attributes including the type of crime, time of occurrence, and location, categorized by district. A comprehensive data preprocessing stage was carried out, involving the extraction of information from raw data, normalization of crime type labels, and conversion of categorical data into numerical form using label encoding. The optimal number of Clusters was determined using the Silhouette score method, which yielded the best result at K = 10. The Clustering results were further evaluated using the Davies-Bouldin Index (DBI) to ensure Cluster quality. The analysis revealed that Binjai Utara District has the highest number of crimes, particularly aggravated theft (curat), which frequently occurs from early morning to late morning. This Clustering is expected to provide valuable insights for authorities in formulating more targeted and data-driven regional security strategies.

References

Arhami, M., & Nasir, M. (2020). DATA MINING: Algoritma dan implementasi (R. I. Utami, Ed.). Penerbit ANDI.

Aswan, Y., Defit, S., & Nurcahyo, G. W. (2021). Algoritma K Means clustering dalam mengklasifikasi data daerah rawan tindak kriminalitas (Polres Kepulauan Mentawai). Jurnal Sistem Informasi dan Teknologi, 3, 245–250. https://doi.org/10.37034/jsisfotek.v3i4.73

BPS Kota Binjai. (2023). Kota Binjai dalam angka 2023.

Buaton, R., Zarlis, M., & Yasin, V. (2021). Konsep data mining dalam implementasi (The concept of data mining in implementation). Mitra Wacana Media.

Fauzi, I. F., Resmi, M. G., & Hermanto, T. I. (2023). Penentuan jumlah cluster optimal menggunakan Davies–Bouldin index pada algoritma K Means untuk menentukan kelompok penyakit. [Nama Jurnal], 7(2), 2598–8069.

Ilham, M., & Wibisono, B. H. (2023). Pola spasial kejahatan pencurian berdasarkan aspek temporal di Kecamatan Kadia. SPECTA Journal of Technology, 7(3), 711–722. https://doi.org/10.35718/specta.v7i3.1033

Jasman, M., Asba, P., Saputra, I. R., & Pinrang, K. R. (2023). Urgensi olah tempat kejadian perkara dalam proses pembuktian. [Nama Jurnal], 5(1), 101–112.

Juliawati, F., Buaton, R., Saragih, R., & Kaputama, S. (2023). Pengelompokan data mining penerimaan bantuan pangan non tunai (BPNT) menggunakan metode clustering (Studi kasus: Kantor Desa Payabakung Hamparan Perak). Journal of Computer Science and Information Technology, 3(2), 69–77.

Khadapi, M., & Pakpahan, V. M. (2024). Analisis sentimen berbasis jaringan LSTM dan BERT terhadap diskusi. [Nama Jurnal], 6, 130–137.

Kharisma, E. T., Jananto, A., & Teknologi, F. Stikubank, U. (2024). Penerapan data mining clustering algoritma K Means untuk menganalisa pola kejadian tindak kejahatan (Studi kasus Polrestabes Semarang). [Nama Jurnal], 5(4), 1580–1587.

Mulyawan, A. R., Gunawan, D., Basri, H., Alfarizi, S., & Ichsan, N. (2023). Penerapan K Medoids clustering dan silhouette method untuk strategi pemasaran program donasi pada lembaga amil zakat. Information System for Educators and Professionals: Journal of Information System, 8(1), 107. https://doi.org/10.51211/isbi.v8i1.2468

Rahayu, P., Sudipa, I. G. I., Suryani, Surachman, A., Ridwan, A., Darmawiguna, I. G. M., Sutoyo, M., Slamet, I., Harlina, S., & May Sanjaya, I. M. (2024). Buku ajar data mining (Vol. 1, Jan 2024).

Sinaga, L. V., & Simatupang, M. Y. M. (2020). Fungsi olah tempat kejadian perkara (TKP) guna mengungkapkan kasus penganiayaan berat ditinjau dari sudut hukum acara pidana. Jurnal Rectum: Tinjauan Yuridis Penanganan Tindak Pidana, 2(2), 129–137. https://doi.org/10.46930/jurnalrectum.v2i2.645

Sucahyo, N., Kurniati, I., & Harvit, K. (2022). SWADHARMA (JRIS).

Syahkur, M. R., & Hartama, D. (2024). Evaluasi jumlah cluster pada algoritma K Means++ menggunakan silhouette dan elbow dengan validasi nilai DBI dalam mengelompokkan gizi balita. [Nama Jurnal], 13(3), 487–496.

Yuliyanti, D., & Martanto, M. (2024). Clustering tingkat kejahatan kriminal menggunakan metode K Means di wilayah Kabupaten Cirebon. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3509–3514. https://doi.org/10.36040/jati.v7i6.8894

Downloads

Published

2025-07-03

How to Cite

Herdina Putri Ahmadi, Magdalena Simanjuntak, & Muammar Khadapi. (2025). Pengelompokan Tindak Kejahatan Berdasarkan Tempat Kejadian Perkara di Kota Binjai Menggunakan Metode Clustering : Studi kasus: Polres Binjai. Saturnus : Jurnal Teknologi Dan Sistem Informasi, 3(3), 75–85. https://doi.org/10.61132/saturnus.v3i3.933