Optimalisasi Waktu Penjemputan Dan Lokasi Pada Data Histori Perjalanan NYC TLC Menggunakan Exploratory Data Analysis
DOI:
https://doi.org/10.61132/uranus.v1i2.175Keywords:
univariate analysis, NYC TLC, taxi usage patternsAbstract
This study analyzes the "NYC TLC Trip Record" dataset for the period January 1, 2023 to January 31, 2023 to understand taxi usage patterns in New York City. The objectives to be achieved in this analysis include: (1) Identify the days and times with the highest demand for taxi services, (2) Identify the boroughs with the highest demand for taxi services. We applied univariate analysis for this analysis. The results show that the day with the highest demand occurs on Tuesday for the densest time occurs in the vulnerable time of 3 pm to 6 pm. The boroughs with the highest taxi demand are Manhattan, Queens, and Brooklyn. This analysis provides the results for NYC TLC to develop a data-driven optimization strategy. This analysis not only helps in identifying demand hotspots but also provides insights for more efficient taxi scheduling and placement. With this analysis, it is expected that more effective pick-up time and location optimization strategies can be developed, thereby improving operational efficiency and customer satisfaction in taxi services in New York City.
References
Ascarya Solution. (2023, March 11). Analisis Univariat dan Bivariat, Cara Olah Datanya. Ascarya Solution. Retrieved June 20, 2024, from https://ascarya.or.id/analisis-univariat-dan-bivariat/
Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131.
Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python (2nd ed.). California: O'Reilly Media.
Cahyaningrum, W., & Gunawan. (2023). Hubungan Antara Intensitas Penggunaan Gawai dengan Perkembangan Literasi Awal Pada Anak Prasekolah Usia 4-6 Tahun di TK A isyiyah Kedungharjo Mantingan. Jurnal Terapi Wicara dan Bahasa, Volume 1 Nomor 2 Tahun 2023, 228-239. Retrieved from https://jtwb.org/index.php/jtwb/article/view/60
City of New York. (n.d.). NYC Taxi Zones. Retrieved June 20, 2024, from https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
City of New York. (n.d.). Taxi & Limousine Commission. Retrieved June 20, 2024, from https://www.nyc.gov/site/tlc/index.page
Gu, Z. (2022). Complex heatmap visualization. Imeta, 1(3), e43.
Komorowski, M., Marshall, D. C., Salciccioli, J. D., & Crutain, Y. (September 2016). Exploratory Data Analysis. In M. Komorowski, D. C. Marshall, J. D. Salciccioli, & Y. Crutain (Eds.), Secondary Analysis of Electronic Health Records (pp. 185-203). doi:10.1007/978-3-319-43742-2_15. License: CC BY-NC 4.0. Imperial College London.
Kosmos, P. (2024, January 15). Visualisasi Data: Pengertian, Fungsi, dan contohnya. Telkom University. Retrieved June 20, 2024, from https://dac.telkomuniversity.ac.id/visualisasi-data-pengertian-fungsi-dan-contohnya/
Lembaga Layanan Pendidikan Tinggi Wilayah V Yogyakarta. (2021, August 23). 9 Jenis Chart Yang Dapat Anda Gunakan Untuk Visualisasi Data Dalam Presentasi Anda. Artikel. Retrieved June 20, 2024, from https://lldikti5.kemdikbud.go.id/home/detailpost/9-jenis-chart-yang-dapat-anda-gunakan-untuk-visualisasi-data-dalam-presentasi-anda/
Lizana, H. I., & Ridho, F. (2021). Implementasi dan Evaluasi Visualisasi Data Interaktif pada Publikasi Laporan Bulanan Data Sosial Ekonomi Indonesia. Seminar Nasional Official Statistics, 2021(1), 947-957. doi:10.34123/semnasoffstat.v2021i1.795
Mujilahwati, S. (2021). VISUALISASI DATA HASIL KLASIFIKASI NAÏVE BAYES DENGAN MATPLOTLIB PADA PYTHON. Prosiding SNST ke-11 Tahun 2021, Volume 1 No. 1(E. 31). Retrieved from https://publikasiilmiah.unwahas.ac.id/PROSIDING_SNST_FT/article/view/5164
Nasution, L. M. (2017). Statistik deskriptif. Hikmah, 14(1), 49-55.
Perer, A., & Shneiderman, B. (2008). Integrating Statistics and Visualization: Case Studies of Gaining Clarity during Exploratory Data Analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 265-274). Florence, Italy: ACM.
Rao, A. S., Vardhan, B. V., & Shaik, H. (2021). Role of Exploratory Data Analysis in Data Science. In Proceedings of the 6th International Conference on Communication and Electronics Systems (ICCES 2021) (pp. 1457–1461). doi: 10.1109/ICCES51350.2021.9488986.
Sagala, N. T., & Aryatama, F. Y. (2022). Exploratory Data Analysis (EDA): A Study of Olympic Medallist. Sistemasi: Jurnal Sistem Informasi, 11(3), 578-587.
Sahoo, K., Samal, A., Pramanik, J., & Pani, S. (2019). Exploratory Data Analysis using Python. International Journal of Innovative Technology and Exploring Engineering, 8(12), 4727–4735. doi: 10.35940/ijitee.L3591.1081219.
Soendari, T. (2012). Metode Penelitian Deskriptif. Bandung, UPI.
Tukey, J. W. (1977). Exploratory Data Analysis (Vol. 2). Boston: Addison-Wesley.
Velleman, P. F., & Hoaglin, D. C. (2014). Applications, Basics, and Computing of Exploratory Data Analysis. Washington: The Internet-First University Press.
Waskom, M. (2022). Seaborn: statistical data visualization. Retrieved June 20, 2024, from https://seaborn.pydata.org/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Uranus : Jurnal Ilmiah Teknik Elektro, Sains dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.