Klasifikasi Status Stunting Pada Anak Bawah Lima Tahun Menggunakan Extreme Gradient Boosting
DOI:
https://doi.org/10.61132/merkurius.v2i4.159Keywords:
Stunting, Classification, Machine learning, Extreme Gradient BoostingAbstract
Stunting is a condition of failure to thrive in children, in Indonesia it is still a serious problem with a fairly high prevalence. The government is trying to reduce stunting rates with various health programs, and early detection through routine measurements is very important. This research uses the Extreme Gradient Boosting (XGBoost) algorithm to classify stunting status in children under five years. This study uses a relevant dataset containing anthropometric information on children, such as gender, age, birth weight and length, current weight and length, and breastfeeding status. The research stages include dataset search, preprocessing, classification, evaluation, and implementation in a local web-based prediction program. The XGBoost algorithm was chosen because of its advantages in speed, scalability, and efficiency. After preprocessing and data sharing, the model was trained and tested, resulting in 86% accuracy, 89% precision, 95% recall, and 92% F1-score. Evaluation using the confusion matrix and classification report shows that this model is quite effective in classifying stunting status.
References
Adzhima, F., Budianita, E., Nazir, A., & Syafria, F. (2023). Klasifikasi Status Stunting Balita Dengan Metode Support Vector Machine Berbasis Web. INOVTEK Polbeng - Seri Informatika, 8(2). https://doi.org/10.35314/isi.v8i2.3641
Aristio, M. L., & Suhartana, Dr. Ir. I. K. G. (2023). Klasifikasi Musik Berdasarkan Genre dengan Metode eXtreme Gradient Boosting. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 12(1). https://doi.org/10.24843/jlk.2023.v12.i01.p13
Banurea, M., Betaria Hutagaol, D., & Sihombing, O. (2023). Klasifikasi Penyakit Stunting Dengan Menggunakan Algoritma Support Vector Machine Dan Random Forest. Jurnal TEKINKOM, 6(2).
Fauzan Adzim, Budianita, E., Nazir, A., & Syafria, F. (2023). Klasifikasi Status Stunting Balita Menggunakan Metode C4.5 Berbasis Web. ZONAsi: Jurnal Sistem Informasi, 5(3). https://doi.org/10.31849/zn.v5i3.15828
Kemal Musthafa Rajabi, Witanti, W., & Rezki Yuniarti. (2023). Penerapan Algoritma K-Nearest Neighbor (KNN) Dengan Fitur Relief-F Dalam Penentuan Status Stunting. INNOVATIVE: Journal Of Social Science Research, 3(1).
Kharis Pratama, A., Ashaury, H., & Rakhmat Umbara, F. (2024). Klasifikasi Data Gempa Bumi Di Pulau Jawa Menggunakan Algoritma Extreme Gradient Boosting. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4). https://doi.org/10.36040/jati.v7i4.7296
LUTFIANI, S., Saragih, T. H., Abadi, F., Faisal, M. R., & Kartini, D. (2023). Perbandingan Metode Extreme Gradient Boosting Dan Metode Decision Tree Untuk Klasifikasi Genre Musik. Jurnal Informatika Polinema, 9(4). https://doi.org/10.33795/jip.v9i4.1319
Nugraha, A. C., & Irawan, M. I. (2023). Komparasi Deteksi Kecurangan Pada Data Klaim Asuransi Pelayanan Kesehatan Menggunakan Metode Support Vector Machine (SVM) Dan Extreme Gradient Boosting (XGBoost). Jurnal Sains Dan Seni ITS, 12(1). https://doi.org/10.12962/j23373520.v12i1.107032
Pahlevi, O., Amrin, A., & Handrianto, Y. (2024). Optimasi Algoritma Naïve Bayes Berbasis Particle Swarm Optimization Untuk Klasifikasi Status Stunting. Computer Science (CO-SCIENCE), 4(1). https://doi.org/10.31294/coscience.v4i1.2963
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.