Analisis Segmentasi Pelanggan Berbasis RFM dan Evaluasi Efektivitas Kampanye Pemasaran untuk Meningkatkan Retensi

Authors

  • Andy Hermawan Universitas Indraprasta PGRI
  • Fachmi Aditama Institut Teknologi Nasional Bandung
  • Lintang Rizki Ramadhani Universitas Gadjah Mada
  • Nuur Muhammad Ilham Institut Teknologi PLN
  • Aji Saputra Universitas Khairun
  • Nila Rusiardi Jayanti Universitas Indraprasta PGRI

DOI:

https://doi.org/10.61132/neptunus.v2i4.400

Keywords:

RFM Analysis, Customer Segmentation, Marketing Campaign, Customer Retention, ROI

Abstract

This research implements RFM (Recency, Frequency, Monetary) analysis to perform customer segmentation and evaluate the effectiveness of marketing campaigns in a retail company. Using a Kaggle dataset, this study identifies customers based on purchasing behaviour and assesses marketing campaign responses for each segment. The analysis reveals that Loyal, VIP, and New Customer segments showed the highest responses, especially in Campaign 6. The findings emphasize the importance of targeting resources on effective segments and campaigns to optimize marketing strategies and maximize ROI. Personalized campaigns based on segmentation can enhance customer retention and align product offerings with customer needs.

References

Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The role of big data and predictive analytics in retailing. Journal of Retailing, 93(1), 79-95. https://doi.org/10.1016/j.jretai.2016.11.002

Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415-430. https://doi.org/10.1509/jmkr.2005.42.4.415

Hermawan, A., Kahfi, R. A., Surya, E., Aini, U., & Hidayat, R. (2024). Penerapan metode RFM dengan Python dalam segmentasi pelanggan. Jurnal Bisnis Inovatif dan Digital, 1(3), 92–102. https://doi.org/10.61132/jubid.v1i3.222

Hughes, A. M. (1994). Strategic database marketing. Probus Publishing.

Kannan, P. K., & Li, H. A. (2017). Digital marketing: A framework, review and research agenda. International Journal of Research in Marketing, 34(1), 22-45. https://doi.org/10.1016/j.ijresmar.2016.11.006

Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63. https://doi.org/10.1016/j.procs.2010.12.011

Kotler, P., & Armstrong, G. (2018). Principles of marketing (17th ed.). Pearson Education Limited.

Kumar, V., Ramachandran, D., & Kumar, B. (2020). Influence of new-age technologies on marketing: A research agenda. Journal of Business Research, 125, 864-877. https://doi.org/10.1016/j.jbusres.2019.08.034

Miguéis, V. L., Van den Poel, D., Camanho, A. S., & Cunha, J. F. (2012). Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences. Advances in Data Analysis and Classification, 6(4), 337-353. https://doi.org/10.1007/s11634-012-0121-3

Rust, R. T., Lemon, K. N., & Zeithaml, V. A. (2004). Return on marketing: Using customer equity to focus marketing strategy. Journal of Marketing, 68(1), 109-127. https://doi.org/10.1509/jmkg.68.1.109.24030

Venkatesan, R., & Kumar, V. (2004). A customer lifetime value framework for customer selection and resource allocation strategy. Journal of Marketing, 68(4), 106-125. https://doi.org/10.1509/jmkg.68.4.106.42728

Verhoef, P. C., Reinartz, W. J., & Krafft, M. (2010). Customer engagement as a new perspective in customer management. Journal of Service Research, 13(3), 247-252. https://doi.org/10.1177/1094670510375461

Wedel, M., & Kamakura, W. A. (2012). Market segmentation: Conceptual and methodological foundations (Vol. 8). Springer Science & Business Media.

Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121. https://doi.org/10.1509/jm.15.0413

Published

2024-10-08

How to Cite

Andy Hermawan, Fachmi Aditama, Lintang Rizki Ramadhani, Nuur Muhammad Ilham, Aji Saputra, & Nila Rusiardi Jayanti. (2024). Analisis Segmentasi Pelanggan Berbasis RFM dan Evaluasi Efektivitas Kampanye Pemasaran untuk Meningkatkan Retensi. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 2(4), 28–42. https://doi.org/10.61132/neptunus.v2i4.400

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.