Klasifikasi Jenis Jamur Edible Menggunakan Convolutional Neural Network: Studi Kasus pada Jamur Tiram, Enoki, dan Truffle

Authors

  • Devitha Ratu Alamsyach Universitas Muhammadiyah Ponorogo
  • Yovi Litanianda Universitas Muhammdiyah Ponorogo

DOI:

https://doi.org/10.61132/neptunus.v2i3.183

Keywords:

Classification, Types of Fungi, Convolutional Neural Network

Abstract

This study uses a Convolutional Neural Network (CNN) to develop a mushroom type classification model that can differentiate between truffles, enoki and oyster mushrooms very accurately. The dataset consisting of mushroom images is collected from various sources and processed through data augmentation techniques such as rotation, zoom, flip, and shifting to improve model generalization. For final classification, the CNN model used consists of several convolution and pooling layers, followed by a dense layer. The study results show that this model has a validation accuracy of 79.31% after twenty training epochs. Although there were some misclassifications between oyster and enoki mushrooms, data augmentation techniques were shown to improve model performance. This research shows that CNN can be used effectively to classify various types of fungi. This also shows that CNN has many potential applications in the agricultural and food industries. Increasing datasets, studying more complex model architectures, and using advanced data augmentation methods such as Generative Adversarial Networks (GANs) are some suggestions for further research.

References

Al Rivan, M. E., Rachmat, N., & Ayustin, M. R. (2020). Klasifikasi jenis kacang-kacangan berdasarkan tekstur menggunakan jaringan syaraf tiruan. Jurnal Komputer Terapan, 6(1), 89–98. https://doi.org/10.35143/jkt.v6i1.3546

Anggraini, K., Khotimah, S., & Turnip, M. (2015). Jenis-jenis jamur makroskopis di Hutan Hujan Mas Desa Kawat Kecamatan Tayan Hilir Kabupaten Sanggau. 4.

Marzuki, B. M., Erawan, T. S., & Kusmoro, J. (2016). Pengaruh penambahan berbagai takaran ampas tahu pada media bibit induk jagung terhadap pertumbuhan miselium dan bobot bibit induk jamur enoki.

Oleh, D., & Kusumaningrum, T. F. (n.d.). Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Program Studi Statistika.

Peryanto, A., Yudhana, A., & Umar, R. (2020). Rancang bangun klasifikasi citra dengan teknologi deep learning berbasis metode convolutional neural network. Format: Jurnal Ilmiah Teknik Informatika, 8(2), 138. https://doi.org/10.22441/format.2019.v8.i2.007

Rahmadhani, U. S., & Marpaung, N. L. (2023). Klasifikasi jamur berdasarkan genus dengan menggunakan metode CNN. Jurnal Informatika: Jurnal Pengembangan IT, 8(2), 169–173. https://doi.org/10.30591/jpit.v8i2.5229

Salawazo, V. M. P., Gea, D. P. J., Gea, R. F., & Azmi, F. (2019). Implementasi metode convolutional neural network (CNN) pada peneganal objek video CCTV. 3(1).

Vicky, J., Ayu, F., & Julianto, B. (2023). Implementasi pendeteksi penyakit pada daun alpukat menggunakan metode CNN. 2.

Published

2024-06-25

How to Cite

Devitha Ratu Alamsyach, & Yovi Litanianda. (2024). Klasifikasi Jenis Jamur Edible Menggunakan Convolutional Neural Network: Studi Kasus pada Jamur Tiram, Enoki, dan Truffle. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 2(3), 52–59. https://doi.org/10.61132/neptunus.v2i3.183

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.