Klasifikasi Jenis Jamur Edible Menggunakan Convolutional Neural Network: Studi Kasus pada Jamur Tiram, Enoki, dan Truffle
DOI:
https://doi.org/10.61132/neptunus.v2i3.183Keywords:
Classification, Types of Fungi, Convolutional Neural NetworkAbstract
This study uses a Convolutional Neural Network (CNN) to develop a mushroom type classification model that can differentiate between truffles, enoki and oyster mushrooms very accurately. The dataset consisting of mushroom images is collected from various sources and processed through data augmentation techniques such as rotation, zoom, flip, and shifting to improve model generalization. For final classification, the CNN model used consists of several convolution and pooling layers, followed by a dense layer. The study results show that this model has a validation accuracy of 79.31% after twenty training epochs. Although there were some misclassifications between oyster and enoki mushrooms, data augmentation techniques were shown to improve model performance. This research shows that CNN can be used effectively to classify various types of fungi. This also shows that CNN has many potential applications in the agricultural and food industries. Increasing datasets, studying more complex model architectures, and using advanced data augmentation methods such as Generative Adversarial Networks (GANs) are some suggestions for further research.
References
Al Rivan, M. E., Rachmat, N., & Ayustin, M. R. (2020). Klasifikasi jenis kacang-kacangan berdasarkan tekstur menggunakan jaringan syaraf tiruan. Jurnal Komputer Terapan, 6(1), 89–98. https://doi.org/10.35143/jkt.v6i1.3546
Anggraini, K., Khotimah, S., & Turnip, M. (2015). Jenis-jenis jamur makroskopis di Hutan Hujan Mas Desa Kawat Kecamatan Tayan Hilir Kabupaten Sanggau. 4.
Marzuki, B. M., Erawan, T. S., & Kusmoro, J. (2016). Pengaruh penambahan berbagai takaran ampas tahu pada media bibit induk jagung terhadap pertumbuhan miselium dan bobot bibit induk jamur enoki.
Oleh, D., & Kusumaningrum, T. F. (n.d.). Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Program Studi Statistika.
Peryanto, A., Yudhana, A., & Umar, R. (2020). Rancang bangun klasifikasi citra dengan teknologi deep learning berbasis metode convolutional neural network. Format: Jurnal Ilmiah Teknik Informatika, 8(2), 138. https://doi.org/10.22441/format.2019.v8.i2.007
Rahmadhani, U. S., & Marpaung, N. L. (2023). Klasifikasi jamur berdasarkan genus dengan menggunakan metode CNN. Jurnal Informatika: Jurnal Pengembangan IT, 8(2), 169–173. https://doi.org/10.30591/jpit.v8i2.5229
Salawazo, V. M. P., Gea, D. P. J., Gea, R. F., & Azmi, F. (2019). Implementasi metode convolutional neural network (CNN) pada peneganal objek video CCTV. 3(1).
Vicky, J., Ayu, F., & Julianto, B. (2023). Implementasi pendeteksi penyakit pada daun alpukat menggunakan metode CNN. 2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.